Benzothiazole derivatives with varied π -conjugation: Synthesis, tunable solid-state emission, and application in single-component LEDs

Yuwei Song, Lai Hu, Qian Cheng, Zhiyuan Chen, Huan Su, Hao Liu, Rui Liu*, Senqiang Zhu* and Hongjun Zhu

School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China

Figure S3. Mass spectrum of ATZ1

Figure S4. ¹H NMR spectrum of ATZ2 (400 MHz, DMSO-d₆)

Figure S6. Mass spectrum of ATZ2

Figure S7. ¹H NMR spectrum of ATZ3 (400 MHz, CDCl₃)

Figure S8. ¹³C NMR spectrum of ATZ3 (400 MHz, CDCl₃)

Figure S9. Mass spectrum of ATZ3

Figure S11. ¹³C NMR spectrum of ATZ4 (400 MHz, CDCl₃)

Figure S12. Mass spectrum of ATZ4

Figure S13. ¹H NMR spectrum of ATZ5 (400 MHz, CDCl₃)

Figure S14. ¹³C NMR spectrum of ATZ5 (400 MHz, CDCl₃)

Figure S15. Mass spectrum of ATZ5

Figure S16. The UV-vis absorption spectra of ATZ2, ATZ5, and naphthalene in dichloromethane solution (1×10⁻⁵ mol L⁻¹) measured at room temperature.

Figure S17. The UV-vis absorption spectra of ATZ3 and anthracene in dichloromethane solution $(1 \times 10^{-5} \text{ mol } \text{L}^{-1})$ measured at room temperature.

Figure S18. The UV-vis absorption spectra of ATZ4 and pyrene in dichloromethane solution $(1 \times 10^{-5} \text{ mol } \text{L}^{-1})$ measured at room temperature.

Figure S19. Photoluminescence spectra of ATZ1 in different polar solvents

Figure S20. Photoluminescence spectra of ATZ2 in different polar solvents

Figure S21. Photoluminescence spectra of ATZ3 in different polar solvents

Figure S22. Photoluminescence spectra of ATZ4 in different polar solvents

Figure S23. Photoluminescence spectra of ATZ5 in different polar solvents

		1 5			1		
	Hexane	Toluene	CH_2Cl_2	THF	ACN		
ATZ1	0.035	0.019	0.027	0.019	0.017		
ATZ2	0.204	0.213	0.194	0.122	0.188		
ATZ3	0.247	0.261	0.210	0.110	0.175		
ATZ4	0.284	0.311	0.247	0.321	0.169		
ATZ5	0.264	0.249	0.192	0.230	0.138		

Figure S24. Photoluminescence spectra of the thin films prepared by doping different proportions of ATZ1 in PMMA.

Figure S25. Photoluminescence spectra of the thin films prepared by doping different proportions of ATZ3 in PMMA.

Figure S26. Photoluminescence spectra of the thin films prepared by doping different proportions of ATZ4 in PMMA.

Figure S27. Photoluminescence spectra of the thin films prepared by doping different proportions of ATZ5 in PMMA.

Figure S28. Crystal structure of ATZ1, ATZ2, and ATZ3.

		, ,	
	ATZ1	ATZ2	ATZ3
formula	C ₁₃ H ₉ NS	$C_{17}H_{11}NS$	$C_{21}H_{13}NS$
Formula weight	211.27	261.33	311.38
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	P n a 2 ₁	P 2 ₁ /m	$P 2_1/n$
<i>a</i> , Å	16.1420(19)	11.7214(6)	4.0231(3)

Table S2. Crystallographic data of ATZ1, ATZ2, and ATZ3.

b, Å	11.0866(14)	3.8718(2)	28.291(2)
<i>c</i> , Å	5.7979(8)	13.6211(8)	12.8877(10)
α , deg	90	90	90
β , deg	90	94.355(3)	91.515(4)
γ, deg	90	90	90
<i>V</i> , Å ³	1037.6(2)	616.38(6)	1466.35(19)
Ζ	4	2	4
$ ho_{ m calcd}$, g cm ⁻³	1.352	1.408	1.410
T/K	296(2)	193(2)	193(2)
μ , mm ⁻¹	0.272	1.422	1.258
heta	2.229-28.457	2.83-48.85	2.718 - 52.991
F (000)	440	272	648
	$\text{-}21 \leq h \leq 15$	$-13 \le h \le 13$	$\textbf{-4} \le h \le 4$
Index ranges	$-14 \le k \le 14$	$0 \leq k \leq 4$	$-33 \le k \le 33$
	$-7 \le l \le 7$	$0 \le l \le 16$	$-12 \le l \le 15$
Data / restraints /	2552//22/248	1261/1317/285	2560/0/208
parameters			
GOF (F^2)	1.079	1.056	1.095
R, wR	0.0650, 0.1433	0.0553, 0.1388	0.0850, 0.2343

 Table S3. Properties of single-component white light emitting materials based on small organic

 molecules

	Molecular					
Compound	weight	Ф (%)	CIE (x, y)	CRI	CCT (K)	Ref.
3	820	0.9	0.30, 0.43	56		1
TIM	153	11.8	0.33, 0.35	85	5669	2
1	189	2	0.31, 0.35	83	6218	3
TPO-Br	454		0.31, 0.33			4
PTZ-Ph-TTR	477	11	0.33, 0.33	92		5
2PQ-PTZ	479		0.32, 0.34	89	5850	6
rac-BINAP	622	7.6	0.37, 0.44	73		7
СТМ	453		0.35, 0.35	88.8		8
D1c	356	32	0.34, 0.36			9
Cz9PhAn	600	47	0.30, 0.33	75.6		10
2	293	16	0.31, 0.34			11
OPC	544	23	0.35, 0.35			12
PTZ-BP	379	8	0.28, 0.30			13
DPPZ	280	1	0.28, 0.33			14
ClBDBT	322	7.2	0.33, 0.35			15
ImBr	369	4.1	0.29, 0.35			16
3-DPH-XO	363	40	0.27, 0.35			17
SDB2t	582	13	0.27, 0.27			18
P3	310	36	0.28, 0.31			19
ATZ2	262	4.8	0.28, 0.34	73	8401	This work

References

[1] G. Baryshnikov, P. Gawrys, K. Ivaniuk, B. Witulski, R. J. Whitby, A. Al-Muhammad, B. Minaev, V. Cherpak, P. Stakhira, D. Volyniuk, G. Wiosna-Salyga, B. Luszczynska, A.

Lazauskas, S. Tamulevicius and J. V. Grazulzvicius, J. Mater. Chem. C, 2016, 4, 5795.

[2] X. Zheng, Y. Huang, D. Xiao, S. Yang, Z. Lin and Q. Ling, *Mater. Chem. Front.*, 2021, 5, 6960-6968

[3] N. Zhang, C. Sun, X. Jiang, X. Xing, Y. Yan, L. Cai, M. Wang and G. Guo, *Chem. Commun.*, 2017, **53**, 9269-9272.

[4] J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S. Sung, G. Shan, J. Lam, Z. Shuai and B. Tang, *Nat. Commun.*, 2018, **9**, 2963.

[5] K. Wang, Y. Shi, C. Zheng, W. Liu, K. Liang, X. Li, M. Zhang, H. Lin, S. Tao, C. Lee, X. Ou and X. Zhang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 31515-31525.

[6] B. Li, Z. Li, F. Guo, J. Song, X. Jiang, Y. Wang, S. Gao, J. Wang, X. Pang, L. Zhao and Y. Zhang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 14233-14243.

[7] X. Wu, C. Huang, D. Chen, D. Liu, C. Wu, K. Chou, B. Zhang, Y. Wang, Y. Liu, E. Li, W. Zhu and P. Chou, *Nat. Commun.*, 2020, **11**, 2145.

[8] J. Tan, W. Chen, S. Ni, Z. Qiu, Y. Zhan, Z. Yang, J. Xiong, C. Cao, Y. Huo and C. Lee, *J. Mater. Chem. C*, 2020, **8**, 8061-8068.

[9] Q. Yang and J. Lehn, Angew. Chem. Int. Ed. Engl., 2014, 53, 4572-4577.

[10] Y. Chen, K. Tang, Y. Chen, J. Shen, Y. Wu, S. Liu, C. Lee, C. Chen, T. Lai, S. Tung, R. Jeng, W. Hung, M. Jiao, C. Wu and P. Chou, *Chem. Sci.*, 2016, 7, 3556-3563.

[11] H. Liu, X. Cheng, H. Zhang, Y. Wang, H. Zhang and S. Yamaguchi, *Chem. Commun.*, 2017, **53**, 7832-7835.

[12] Z. Xie, C. Chen, S. Xu, J. Li, Y. Zhang, S. Liu, J. Xu and Z. Chi, *Angew. Chem. Int. Ed. Engl.*, 2015, **54**, 7181-7184.

[13] C. Li, J. Liang, B. Liang, Z. Li, Z. Cheng, G. Yang and Y. Wang, Adv. Opt. Mater., 2019, 7, 1801667.

[14] C. Zhou, S. Zhang, Y. Gao, H. Liu, T. Shan, X. Liang, B. Yang and Y. Ma, *Adv. Funct. Mater.*, 2018, **28**, 1802407.

[15] Z. He, W. Zhao, J. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai and B. Tang, *Nat. Commun.*, 2017, **8**, 416.

[16] J. Li, J. Zhou, Z. Mao, Z. Xie, Z. Yang, B. Xu, C. Liu, X. Chen, D. Ren, H. Pan, G. Shi, Y. Zhang and Z. Chi, *Angew. Chem. Int. Ed. Engl.*, 2018, **57**, 6449-6453.

[17] Y. Zhang, Y. Miao, X. Song, Y. Gao, Z. Zhang, K. Ye and Y. Wang, J. Phys. Chem. Lett., 2017, 8, 4808-4813.

[18] B. Xu, H. Wu, J. Chen, Z. Yang, Z. Yang, Y. Wu, Y. Zhang, C. Jin, P. Lu, Z. Chi, S. Liu, J. Xu and M. Aldred, *Chem. Sci.*, 2017, 8, 1909-1914.

[19] X. Ma, L. Jia, B. Yang, J. Li, W. Huang, D. Wu and W. Wong, J. Mater. Chem. C, 2021, 9, 727-735.

Figure S29. Electroluminescent spectra, energized photo (inset) and the electroluminescent data (inset) of commercial UV LED.

Figure S30. Normalized excitation spectra of ATZ1~ATZ5. ATZ1: $\lambda_{em} = 520$ nm, ATZ2: $\lambda_{em} = 526$ nm, ATZ3: $\lambda_{em} = 455$ nm, ATZ4: $\lambda_{em} = 505$ nm, ATZ5: $\lambda_{em} = 428$ nm.