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1. General information

All reagents and solvents were commercially available and used without further
purification. The compounds L1', L2? and 13 were prepared according to the
published procedures. 'H NMR and 3C NMR spectra were recorded in CDCl; or
DMSO-dg on Bruker Model Avance DMX 400 (400 MHz). Absorption spectra were
recorded on a PERSEE model TU-1901 spectrophotometer. Fluorescence spectra
were recorded on a F-7000 FL Spectrophotometer. The fluorescence lifetimes were
measured employing time correlated single photon counting on a FLS980 instrument.
The fluorescence quantum yields were measured on a PTI QM 40 instrument with the
integrating sphere. Transmission electron microscopy (TEM) images were carried out
on a JEOL JEM-2100 instrument. Scanning electron microscopy (SEM) images were
recorded with a Hitachi S-4800 or SU8010 instruments. Dynamic light scattering
(DLS) measurements were performed at a Malvern Instrument. Zeta-potential
measurements were performed on a Zetasizer Nano Z apparatus at 25 °C. ESI-TOF-
mass spectrum was recorded on a Micromass Quattro II triple-quadrupole mass

spectrometer using electrospray ionization with a MassLynx operating system.
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2. Synthesis of MPy1
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Figure S1. Synthesis route of MPy1.

In a dry Schlenk tube, Pd(PPh;)Cl, (140 mg, 0.2 mmol, 0.1 eq) was solubilized

in freshly distilled and degassed triethylamine (13 mL) at 80 °C. Methyl 3,5-

dibromobenzoate (250 mg, 0.85 mmol), 3-ethynylpyridine (263 mg, 2.55 mmol) and

Cul (32.4 mg, 0.17 mmol) were successively added, and the resulting mixture was

heated to 80 °C under argon overnight. The solvent was removed in vacuo and the

crude brown powder was purified by column chromatography on silica gel (PE: EA =

1:1) to give white solid (88 mg, 65 %). 'H NMR (400 MHz, CDCl;) 8 8.65 (d, J=3.2

Hz, 4H), 8.23 (d, J = 1.4 Hz, 2H), 7.92 (d, J = 1.4 Hz, 1H), 7.42 (d, J = 5.6 Hz, 4H),

3.98 (s, 3H).
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Figure S2. 'H NMR spectrum (400 MHz, CDCls, 298K) of compound 1.

Synthesis of 2

Compound 1 (120 mg, 0.3546 mmol, 1 eq), hydrazine monohydrate (1 mL) and
MeOH (10 mL) were mixed together and refluxed for 12 h at 70 °C under inert
atmosphere. Then reaction was stopped and cooled to room temperature and methanol
was evaporated. The product was extracted with dichloromethane (30 mL) and
washed with water (3x50 mL) and brine solution (20 mL). The organic layer was
dried over anhydrous Na,SO, and solvent was evaporated to get the crude product as
light brown oil (400 mg, 80 %). '"H NMR (400 MHz, DMSO-d;) 6 10.02 (s, 1H), 8.68
(d, J/=4.9Hz, 4H), 8.12 (s, 2H), 8.01 (s, 1H), 7.58 (d, J=4.9Hz, 4H). 3C NMR (101
MHz, DMSO-dy) 6 164.22, 150.48, 137.12, 134.94, 131.38, 130.11, 125.95, 122.77,
92.00, 88.48. ESI-MS: m/z Calcd for C,;H4N4O [M+H]" 339.1, found 339.1.
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Figure S4. 3C NMR spectrum of 2 in DMSO-d.
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Figure S5. ESI spectrum of compound 2.

Synthesis of L3

To an ethanol solution of 2 (0.4064 mmol, 137 mg in 5 mL dry ethanol) was
added a solution of 1-pyrenecarboxaldehyde (0.4064 mmol, 100 mg in 10 mL
ethanol). The reaction mixture was stirred for 16 h. Then the mixture was allowed to
cool to room temperature to produce a yellow precipitate. The crude product was
purified by recrystallization with ethanol to afford compound L3 as a yellow-green
solid (160 mg). Yield: 64.8%. 'H NMR (400 MHz, DMSO-ds) 6 12.28 (s, 1H), 9.56 (s,
1H), 8.84 (d, J=9.3 Hz, 1H), 8.72 (d, J = 4.4 Hz, 4H), 8.62 (d, /= 7.9 Hz, 1H), 8.41
(d, J=17.2 Hz, 4H), 8.34 — 8.25 (m, 4H), 8.16 (s, 2H), 7.65 (d, J = 4.7 Hz, 4H). 13C
NMR (101 MHz, DMSO-ds) 6 164.05, 150.09, 138.55, 136.87, 131.66, 131.22,
130.94, 130.42, 129.68, 127.83, 127.70, 127.60, 126.97, 126.09, 125.91, 125.71,
125.51, 125.40, 124.83, 124.23, 123.40, 123.20, 86.30, 80.10. ESI-MS: m/z Calcd for
C33H2,N4O [M+H]* 551.2, found 551.2.
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Figure S6. 'H NMR spectrum of L3 in DMSO-d.
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Figure S7. 13C NMR spectrum of L3 in DMSO-d; at 323 K.
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Figure S8. ESI spectrum of compound L3.

Synthesis of MPy1

L1 (10 mg, 7.0 umol), AgOTTf (5.5 mg, 21.0 umol) and L3 (4 mg, 7.0 umol)
were dissolved in the mixture of DMSO and DCM (2.0 mL, Vpcm:Vpumso = 10:1) in a
20 mL glass vial. The reaction mixture was allowed to stir for 6 h at room temperature,
and the reaction mixture was centrifuged at 3400 r/h for 20 min. To the resulting
homogeneous solution, diethyl ether was added to precipitate the product, which was
then isolated and dried under reduced pressure and re-dissolved in DMSO-d; for
characterization. 'H NMR (400 MHz, DMSO-dy) 4 12.30 (s, 1H), 9.54 (s, 1H), 8.95 —
8.82 (m, 5H), 8.61 (d, /= 8.7 Hz, 1H), 8.41 (d, /= 9.4 Hz, 4H), 8.34 — 8.15 (m, 6H),
7.91 (s, 4H), 6.64 (s, 2H), 6.53 (s, d, J = 22.3 Hz, 1H), 4.08 (d, J = 5.8 Hz, 2H), 3.73
(s, 2H), 3.60 — 3.50 (m, 6H), 3.44 — 3.42 (m, 2H), 3.25 (s, 3H), 1.82 (s, 24H), 1.19 —
1.06 (m, 36H). 3'P NMR (121.4 MHz, DMSO-dg) & (ppm) 15.52 (s, '9°Pt satellites,
Upp = 1729.95 Hz). ESI-TOF-MS: Co43H300F 18N12033P12PtsSs m/z [M-30Tf]**
1849.39; [M-4OTf]* 1348.28.
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Figure S10. 3'P{'H} NMR spectrum of MPy1 in DMSO-dj.
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Figure S11. Experimental (red) and calculated (blue) electrospray ionization mass

spectra of MPyl1.

3. Synthesis of MPy2
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Figure S12. Synthesis route of MPy?2.

L2 (10 mg, 7.0 umol), AgOTTt (5.5 mg, 21.0 umol) and L3 (4 mg, 7.0 umol)
were dissolved in the mixture of DMSO and DCM (2.0 mL, Vpem:Vpumso = 10:1) in a
20 mL glass vial. The reaction mixture was allowed to stir for 6 h at room temperature,
and the reaction mixture was centrifuged at 3400 r/h for 20 min. To the resulting
homogeneous solution, diethyl ether was added to precipitate the product, which was

then isolated and dried under reduced pressure and re-dissolved in DMSO-dg for
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characterization. 'H NMR (400 MHz, DMSO-dy) 4 12.31 (s, 1H), 9.55 (s, 1H), 8.96 —
8.81 (m, SH), 8.62 (d, J = 8.1 Hz, 1H), 8.42 (d, J= 9.1 Hz, 4H), 8.37 — 8.14 (m, 6H),
7.89 (d, J = 15.6 Hz, 4H), 7.10 (s, 2H), 7.04 (s, 1H), 1.83 (s, 24H), 1.18 — 1.07 (m,
36H). 3'P NMR (121.4 MHz, DMSO-dg) 8 (ppm) 15.50 (s, '%°Pt satellites, 'Jpp =
1728.74 Hz). ESI-TOF-MS: Cj,Hjs58F15N120,1P1,PtsSs m/z [M-40Tf ]+ 1231.28;
[L1+2L3-20Tf)*" 1043.77; [L1+L3-20Tf]*" 768.18. (Where M represents the intact

assembly).
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Figure S13. '"H NMR spectrum of MPy2 in DMSO-d.
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Figure. S14. 3'P{'H} NMR spectrum of MPy2 in DMSO-dj.

1231.28

1 mg/mL DMF m— Saaes

SL_10192021-XY-M2-6 1 (0.033) TOF MS ES+

100, 1418.3086 7.8%e3

1417.3060 1233.28
11072756
5561285 1106.2737)
[L2+L3-20Tf o
4 1231.28
768.1782
557.1378 h419.3115 1230.78)
B "
[L2+21.3-20T]?
4
767.6823 00 1827 1125.1821 1416:3037
M-40TH}
1420 3148
767.1865 1277.2586
715.0983 1507.9930 1230 1231 123? 1233
1663.7833 19237386 [M-40Tf]™
W " L " " " Lol | miz
600 800 1000 1200 1400 1600 1800 2000 200 2400 2600 2800

Figure S15. Experimental (red) and calculated (blue) electrospray ionization mass

spectra of MPy2.
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4. Synthesis of MPy3
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Figure S16. Synthesis route of MPy3.
Synthesis of 3

3,5-dibromobenzoic acid (140 mg, 1 eq), HOBt (148.6 mg, 1.1 eq), 1-ethyl- (3-
dimethylaminopropyl) carbonyl diimidehydrochloride (EDCI) (210 mg, 1.1 eq) and
triethylamine (300 mg, 3 eq) were added into a 50 mL two-necked flask and pumped
under the protection of argon for three times. Then the newly steamed methylene
chloride (20 mL) was added at 0 °C. After stirring for 30 min in ice bath, 1-
aminopyrene (93 mg, 0.8 mmol, 0.8 eq) dichloromethane solution was added drop by
drop. After dropping, the solution was removed from the ice bath and reacted at room
temperature for 24 h. The solvent was removed by reduced pressure, and the resulting
mixture was dissolved with ethyl acetate and washed with water to remove water-
soluble impurities. The residue was purified by column chromatography (silica,
petroleum:ethyl acetate = 1:2 as the eluent) to obtain brown oily compound. 'H NMR
(400 MHz, DMSO-dg) 6 10.99 (s, 1H), 8.36-8.10 (m, 12H). '*C NMR (101 MHz,
DMSO-dy) & 164.05, 138.55, 136.87, 131.66, 131.22, 130.94, 130.43, 129.68, 127.83,
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127.70, 127.60, 126.97, 126.09, 125.92, 125.71, 125.51, 125.40, 124.83, 124.23,
123.40, 123.20. ESI-MS: m/z Calcd for C»3H3Br,NO [M+H]" 477.9, found 477.9.
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Figure S17. '"H NMR spectrum of 3 in DMSO-d.
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Figure S18. 3C NMR spectrum of 3 in DMSO-dj.
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Figure S19. ESI spectrum of compound 3.
Synthesis of L4

A Schlenk tube was charged with 3 (250 mg, 0.85 mmol), 4-ethynylpyridine
hydrochloride (263 mg, 2.55 mmol), Pd(PPh;)Cl, (140 mg, 0.2 mmol), and Cul (32.4
mg, 0.17 mmol). The mixture was placed under nitrogen atmosphere, and anhydrous
triethylamine (15 mL) and 1,4-dioxane (10 mL) were added by syringe. The reaction
was heated at 85 °C for 48 h under nitrogen, then cooled down to room temperature
and the solvents were removed under reduced pressure. The residue was dissolved in
dichloromethane (200 mL) and washed by water (150 mL). After drying over Na,SOy,,
the solvent was removed and the residue was purified by column chromatography on
silica gel (EA/petroleum ether = 1:1) to afford L4 as a yellow powder. Yield: 187 mg,
59%. 'H NMR (400 MHz, DMSO-dq) 6 11.12 (s, 1H), 8.76 (s, 4H), 8.55-8.29 (m, 9H),
8.27-8.21 (m, 2H), 8.18 (d, /= 7.6 Hz, 1H), 7.68 (d, J = 5.0 Hz, 4H). *C NMR (400
MHz, DMSO-ds) 6 164.05, 150.09, 138.55, 131.66, 131.22, 130.42, 129.68, 127.83,
127.70, 127.60, 126.97, 126.09, 125.91, 125.71, 125.51, 125.40, 124.83, 124.23,
123.40, 123.20, 86.30, 80.10. ESI-MS: m/z Calcd for Cs;;H,N;O [M+H]" 524.2,
found 524.2.
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Figure S21. 3C NMR spectrum of L4 in DMSO-dj.
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Figure S22. ESI spectrum of compound L4.
Synthesis of MPy3

L1 (10 mg, 7.0 umol), AgOTTf (5.5 mg, 21.0 umol) and L4 (4 mg, 7.0 umol)
were dissolved in the mixture of DMSO and DCM (2.0 mL, Vpem:Vpwmso=10:1) in a
20 mL glass vial. The reaction mixture was allowed to stir for 6 h at room temperature,
and the reaction mixture was centrifuged at 3400 r/h for 20 min. To the resulting
homogeneous solution, diethyl ether was added to precipitate the product, which was
then isolated and dried under reduced pressure and re-dissolved in DMSO-d; for
characterization. '"H NMR (400 MHz, DMSO-d;) & 11.08 (s, 1H), 8.90 (s, 4H), 8.60 (s,
1H), 8.4 — 8.2 (m, 11H), 7.90 (s, 4H), 6.63 (s, 2H), 6.56 (s, 1H), 4.05 (s, 2H), 3.72 (s,
2H), 3.61 — 3.49 (m, 6H), 3.43 (s, 2H), 3.24 (s, 3H), 1.81 (s, 24H), 1.15 — 1.05 (m,
36H). 3'P NMR (121.4 MHz, DMSO-dg) 8 (ppm) 15.52 (s, '%°Pt satellites, 'Jpp =
1731.16 Hz). CyoHpe7F1sNgO33P15PtsSs m/z [M-30Tf]** 1821.38; [M-4O0Tf]*
1328.80; [L1+2L4-20Tf]** 1097.77; [M-50Tf]>" 1033.23; [L1+L4-20Tf]** 835.70.

(Where M represents the intact assembly).
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Figure S25. Experimental (red) and calculated (blue) electrospray ionization mass

spectra of MPy3.

5. Synthesis of MPy4
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Figure S26. Synthesis route of MPy4.

Synthesis of MPy4

L2 (10 mg, 7.0 umol), AgOTf (5.5 mg, 21.0 umol) and L4 (4 mg, 7.0 umol)
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were dissolved in the mixture of DMSO and CH,Cl, (2.0 mL, Vcpacrn:Vouso = 10:1)
in a 20 mL glass vial. The reaction mixture was allowed to stir for 6 h at room
temperature, and the reaction mixture was centrifuged at 3400 r/h for 20 min. To the
resulting homogeneous solution, diethyl ether was added to precipitate the product,
which was then isolated and dried under reduced pressure and re-dissolved in DMSO-
dg for characterization. 'H NMR (400 MHz, DMSO-d;) 6 11.09 (s, 1H), 8.90 (s, 4H),
8.60 (s, 2H), 8.38 — 8.12 (m, 10H), 7.90 (s, 4H), 7.10 (d, J= 7.8 Hz, 2H), 7.03 (s, 1H),
1.82 (s, 24H), 1.12 — 1.06 (m, 36H). 3'P NMR (121.4 MHz, DMSO-ds) & (ppm) 15.48
(s, 19°Pt satellites, 'Jpp = 1734.81 Hz). ESI-TOF-MS: C;;9H,55F 1§NgO,P,PtsSs m/z
[M-30Tf]?* 1659.25; [M-40Tf]*" 1207.19; [L2+2L4-20T{]*" 1016.68; [M-50Tf]>*
936.16; [L2+L4-20Tf]** 755.13. (Where M represents the intact assembly).

CHCl, H{0 DMSO
f ‘ |
spinning side ‘ |
|

‘ bands || |
| T
/ I Al \ [} \

JN\ J; e ' W ‘w,-/l“" L u.___
o by g LS o ‘|_
(o] <O <O — © [{e] -~
& ha = NN © ©
R F= R e e &
11.5 10.5 9.5 8.5 756 6.5 55 45 35 25 1.5 0.5
1 (ppm)

Figure S27. 'H NMR spectrum of MPy4 in DMSO-d.
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Figure S28. 3'P{'H} NMR spectrum of MPy4 in DMSO-d.

DMF 1MGML

SL_11122021-XY-M4-1 6 (0.117) Cm (2:72) TOF MS ES+
38e7
1004 429.0667 1.38e
s 2.0
[L2+L4-20TfP"
iy wozs [ waoze
4300700  754.6401.
4270528
roe2 7BB.c307 1657 1658 1659 1660 1661 1662 1206 1207 1208 1209
s i
.
754.1367)|
2
[L2+2L4-20Tf]?
|
756.1398 1016.6844
556.0877
425.0346] 5550997 1016.1835.
557.1069
400.0274. 1017.6868 1657 1656 59 1sev et e 1206 1207 '2'7:‘ 1209 (Rl
M-30Tf]* M-40Tf)*" -5 |
1440174 LsMB-SO TS oo et Reet
18.1881
m
7430776 1005.1376. M'40T 3+
(MAOTI Mgty
7425779 t :JL l 1081.1989 |
0 ik L J Al o
T f Y T T r T s Y T T T T T T T T T T T T T T T T T mz
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

Figure S29. Experimental (red) and calculated (blue) electrospray ionization mass

spectra of MPy4.

6. Experimental procedure and methods

6.1 The preparation of the samples
The preparation process for the assembly: the stock solution of MPy1 (2x10* M,
dissolved in DMSO), ESY (1x10- M, dissolved in H,O-DMSO, v/v; 3:2), SR101
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(1x10 M, dissolved in HO—DMSO, v/v; 3:2) were prepared, respectively. MPyl
assembly was prepared as follows: 0.2 mL of MPy1 stock solution was added into the
mixture of water (2.4 mL) and DMSO (1.4 mL) under stirring to afford 1x10- M
solution (HO—-DMSO, v/v; 3:2). MPy1-ESY assembly was prepared as follows: 20
uL of ESY stock solution was added into 2 mL of MPyl assembly. MPy1-SR101
assembly was prepared as follows: 20 uL. of SR101 stock solution was added into 2
mL of MPy1 assembly. MPy1-ESY-SR101 assembly was prepared as follows: 10 uL
of SR101 solution was added into 2 mL of MPy1-ESY assembly (100:1).

The fluorescence experiments were conducted as follows: ESY and SR101 was
dissolved in H,O—DMSO (3:2; v/v) and added into the H,O—DMSO mixture of
MPy1 or MPy1-ESY assembly (100:1), respectively.

6.2 The measurement of the Tyndall effect

As shown in 6.1, the solution of MPyl, MPy1-ESY (100:1) and MPy1-ESY-
SR101 (200:2:1) in H,O—DMSO (3:2; v/v) was prepared, [MPyl] = 1.0x10° M,
[ESY] = 1.0x10% M, [SR101] = 5.0x10 M, using a laser pointer to send a beam of

light through cuvette, which were photographed under 365 nm UV light.

6.3 Preparation of anti-counterfeiting inks

The luminescent printing was performed with a modified HP Deskjet 1112 inkjet
printer. The conventional inkjet office printer cartridge (HP 803) was refitted first.
After removal of ink, the cartridge was thoroughly cleared with water and ethanol
until it was clean, and dried by blowing with N, at room temperature. The fluorescent
ink (MPy1-ESY—SR101 system at different donor/acceptor ratios) was injected into

the cartridge, and then different patterns were printed as designed on unmodified copy

paper.

6.4 Energy transfer efficiency (@gr)

The energy-transfer efficiency (@) was calculated using equation S1.

QET=1 - IDAa (kex=don0r)/ ID» (Mex=donor) (eq' Sl)
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For MPy1-ESY system, where I, and Iy are the fluorescence intensity of
MPy1-ESY assembly (donor and acceptor) and MPy1 assembly (donor) at 460 nm
when excited at 384 nm, respectively. The energy-transfer efficiency (@p;) was
calculated as 12.2 % in H,O—DMSO (3:2; v/v), measured under the condition of
[MPy1]=1.0x10°M, [ESY] = 1.0x107 M, and A, = 384 nm.

For MPy1-SR101 system, where I, and I;, are the fluorescence intensity of
MPy1-SR101 assembly (donor and acceptor) and MPy1 assembly (donor) at 460 nm
when excited at 384 nm, respectively. The energy-transfer efficiency (@p;) was
calculated as 2.3 % in H,O—DMSO (3:2; v/v), measured under the condition of
[MPy1] = 1.0x10 M, [SR101] = 1.0x10"7 M, and A, = 384 nm.

For MPy1-ESY-SR101 system, where Iy, and Iy, are the fluorescence intensity
of MPy1-ESY—SR101 assembly (donor and acceptor) and MPyl1-ESY assembly
(donor) at 550 nm when excited at 384 nm, respectively. The energy-transfer
efficiency (@) was calculated as 20.1 % in H,O—DMSO (3:2; v/v), measured under
the condition of [MPy1] = 1.0x10> M, [ESY] = 1.0x107 M, [SR101] = 5.0x10-* M,
and A, = 384 nm,

6.5 Antenna effect (AE)

The antenna effect (AE) was calculated using equation S2.

Antenna effect = (I, g.ex=donor)-Ip, (ex=donor))/IDA, (ex=acceptor) (eq. S2)
Where I, (ex=donor) and Ip,, (hex =acceptor) &€ the fluorescence intensity of the system
with excitation of donor and direct excitation of acceptor, respectively. I, (hex=donor) 1S
the fluorescence intensity of the donor.

For MPyl1-ESY system, where Ij,, (hex=donor) and Ip,, (ex=acceptor) ar'€ the
fluorescence intensity at 550 nm with the excitation of the donor at 384 nm and the
direct excitation of the acceptor at 500 nm, respectively. I, (ex= donor) 1s the
fluorescence intensity at 550 nm of the MPy1 assembly, which was normalized with
the MPy1-ESY assembly at 460 nm. The antenna effect value was calculated as 14.3
in H,O-DMSO (3:2; v/v), measured under the condition of [MPy1] = 1.0x10” M,

[ESY]=1.0x10"7 M, and A, = 384 nm (Figure S56).
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For MPy1-SR101 system, where Ip,, y and Ipa, (ex=acceptory ar€ the

(hex=donor
fluorescence intensity at 610 nm with the excitation of the donor at 384 nm and the
direct excitation of the acceptor at 580 nm, respectively. Ip, qex—donory 18 the
fluorescence intensity at 610 nm of the MPy1 assembly, which was normalized with
the MPy1-SR101 assembly at 460 nm. The antenna effect value was calculated as 5.8
in H,O—-DMSO (3:2; v/v), measured under the condition of [MPy1] = 1.0x10° M,
[SR101]=1.0x10" M, and A, = 384 nm (Figure S56).

For MPy1-ESY—SR101 system, where Ip,, gex=donor) @14 Ipa, ex=acceptor) 31€ the
fluorescence intensities at 610 nm with the excitation of the donor at 384 nm and the
direct excitation of the acceptor at 580 nm, respectively. Ip, o= donory 18 the
fluorescence intensities at 610 nm of the MPyl-ESY assembly, which was
normalized with the MPyl-ESY—SR101 assembly at 550 nm. The antenna effect
value was calculated as 9.3 in H,O—DMSO (3:2; v/v), measured under the condition
of [MPy1] = 1.0x10-3 M, [ESY] = 1.0x107 M, [SR101] = 5.0x10® M, and A, = 384

nm (Figure S58).

7. Additional tables

Table S1. Fluorescence lifetimes of MPyl, MPyl-ESY and MPyl1-ESY—-SR101
assemblies in H,O—DMSO (3:2; v/v).

Sample T/ns | Rel% | Tyns | Rel % A v
MPy1 (solid) 1.64 41.45 5.39 58.55 4118 | 1.237
MPy1? 1.64 39.07 5.35 60.93 4308 | 1.208

MPy1-ESY (300:1)* | 1.47 31.23 4.90 68.77 | 3.210 | 1.212

MPy1-ESY (100:1)? 1.30 29.50 4.56 70.50 | 1.794 | 1.158

MPy1-ESY (100:1)* | 128 | 7132 | 4.78 | 28.68 | 1.482 | 1.283

MPy1-ESY-SR101
1.19 58.21 4.34 41.79 | 2.115 | 1.278
(200:2:0.5)°

MPyl1-ESY—-SR101 1.19 65.28 3.73 3472 | 4.087 | 1.287

S25



(200:2:1)b

a: monitored at 460 nm upon excitation at 375 nm; [MPy1] = 1.0x10° M, [ESY] =

1.0x107 M.

b: monitored at 550 nm upon excitation at 375 nm; [MPy1] = 1.0x10° M, [ESY] =

1.0x107 M, [SR101] = 5.0x10* M, (Figures S31, S47-S52).

Table S2. Fluorescence quantum yields of ESY in H,O—DMSO (3:2; v/v), SR101 in

H,0-DMSO (3:2; v/v), MPy1 (in DMSO solution), MPy1 (solid), MPy1-ESY and

MPy1-ESY-SR101 in H,O—-DMSO (3:2; v/v).

Fluorescence
Sample Concentration
quantum yields (®y)
ESY [ESY]=1.0x10"M 38.86%
SR101 [SR101]=1.0x10~> M 81.58%
MPy1 in DMSO solution [MPy1] = 1.0x10" M 0.98%
MPy1 in the solid state - 0.02%
MPy1 [MPyl] =1.0x10"M 13.2%
[MPyl] =1.0x10°M
MPy1-ESY 17.4 %
[ESY]=1.0x10"M
[MPyl] =1.0x10°M
MPy1-SR101 9.11 %
[SR101]=1.0x10"M
[MPy1] = 1.0x10°
M
MPy1-ESY-SR101 213 %

[ESY] = 1.0x107 M
[SR101]=5.0x10% M

Table S3. The energy transfer efficiency in H;O—DMSO (3:2; v/v).

Sample

Concentration

energy transfer efficiency
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(2.)

MPyl-ESY [MPy1] = 1.0x10°M
12.2 %

(100:1) [ESY] = 1.0x107 M

MPy1-SR101 [MPy1] = 1.0x10° M
2.3 %

(100:1) [SR101]=1.0x10"M

[MPy1] = 1.0x10° M
MPy1-ESY—-SR101

[ESY] = 1.0x107 M 20.1 %

(200:2:1)

[SR101]=5.0x10°M

Table S4. Antenna effect

Sample Concentration Antenna effect
MPyl1-ESY [MPy1]=1.0x10°M
14.3
(100:1) [ESY]=1.0x107M
MPy1-SR101 [MPy1]=1.0x10°M
5.8
(100:1) [SR101]=1.0x10"M
[MPy1] = 1.0x10°M
MPy1-ESY—SR101
[ESY]=1.0x10"M 9.3

(200:2:1)

[SR101]=5.0x10°*M

8. Additional Spectra and images
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Figure S30. The emission of MPy1 on A, 390 nm (a) and excitation spectrum for A,

530 nm (b) in the solid state.
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Figure S31. Fluorescence decay profiles of MPy1 (Aex = 390 nm, Aggpected = 530 nm)

in the solid state.
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Figure S32. Fluorescence spectrum of MPyl in THF (1% DMSO) at 298 K (A =
390 nm).
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Figure S33. (a) Fluorescence spectra of MPyl in H,O—DMSO mixtures with
different water volume fractions (fw, vol %) (A, = 384 nm). (b) Fluorescence
intensity and emission wavelength of MPy1 with various fractions of water from 0 to
90 %. (c) Photographs of MPyl with various fractions of water under 365 nm

irradiation.
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Figure S34. FTIR spectra of compound MPy1 (10 mM) in DMSO (black line) and
H,O-DMSO (3:2; v/v) (red line). The sharp amide I band shifted from 1670 cm! in
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DMSO (monomers) to 1646 cm™!' in H,O—DMSO (3:2; v/v) (aggregation), suggesting

the formation of intermolecular hydrogen bonds.
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Figure S35. Zeta potentials of MPyl, MPyl1-ESY (100:1), MPy1-SR101 (100:1)
and MPy1-ESY—SR101 (200:2:1) in H,O-DMSO (3:2; v/v).
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Figure S36. Fluorescence spectra of L3 in H,O—DMSO mixtures with different water

volume fractions (fw, vol %) (A, = 350 nm).
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Figure S37. (a) Fluorescence spectra of MPy2 in H,O—DMSO mixtures with

different water volume fractions (fw, vol %) (A, = 350 nm). (b) Fluorescence

intensity of MPy2 with various fractions of water from 0 to 90 %.
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Figure S38. (a) Fluorescence spectra of MPy4 in H,O—DMSO mixtures with

different water volume fractions (fw, vol %) (A, = 350 nm). (b) Fluorescence

intensity of MPy4 with various fractions of water from 0 to 90 %.
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Figure S39. (a) Fluorescence spectra of MPy3 in H,O—DMSO mixtures with
different water volume fractions (fw, vol %) (A, = 350 nm). (b) Fluorescence

intensity of MPy3 with various fractions of water from 0 to 90 %.
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Figure S40. Normalized absorption spectrum of ESY and emission spectrum of
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Figure S41. Fluorescence spectra of ESY in H,O-DMSO (3:2, v/v) (A, = 500 nm).
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Figure S42. Fluorescence spectra of MPy1-ESY, MPyl1-ESY—-SR101, SR101 and
ESY (A, =384 nm) in H,O—DMSO (3:2; v/v).
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MPy1-ESY assembly.
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Figure S44. Fluorescence spectra of SR101 in H,O-DMSO (3:2, v/v) (A, = 580 nm).
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Figure S46. Fluorescence decay profile of SR101 in H,O-DMSO (3:2, v/v)

monitored at 612 nm.
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Figure S48. Fluorescence decay profile of MPyl-ESY (300:1) assembly in

H,0-DMSO (3:2; v/v) monitored at 460 nm upon excitation at 375 nm.
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Figure S50. Fluorescence decay profile of MPyl1—ESY (100:1) assembly monitored

at 550 nm upon excitation at 375 nm.
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Figure S51. Fluorescence decay profile of MPyl1-ESY—SR101 (200:2:0.5) assembly

monitored at 550 nm upon excitation at 375 nm.
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Figure S52. Fluorescence decay profile of MPyl1-ESY—SR101 (200:2:1) assembly

monitored at 550 nm upon excitation at 375 nm.
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Figure S53. Fluorescence spectra of MPy3 with different concentrations of ESY in

H,0-DMSO (3:2; v/v).
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Figure S54. (a) Normalized absorption spectrum of SR101 and emission spectrum of

MPy1. (b) Fluorescence spectra of MPy1 with different concentrations of SR101 (A,

= 384 nm) in H,O-DMSO (3:2; v/v). (c¢) Fluorescence spectra of MPyl,

MPy1-SR101, SR101 (A, = 384 nm) in H,O—DMSO (3:2; v/v). (d) Fluorescence

decay profiles of MPyl nanoparticles (black line) and MPy1—-SR101 nanoparticles

(MPy1:SR101 = 100:1) in H,O-DMSO (3:2; v/v).
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Figure S55. Fluorescence spectra of (a) MPyl and MPyl1—-ESY assembly and (b)
MPy1 and MPy1-SR101 assembly. [MPy1]= 1.0 x 10> M.
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Figure S56. (a) Fluorescence spectra of MPyl—-ESY (black line, [MPy1] = 1.0x10
M, [ESY] = 1.0x107 M, Aex = 384 nm), the donor (red line, A, = 384 nm) and
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acceptor (blue line, A.x = 500 nm). The fluorescence intensity of MPyl1—ESY at 460
nm was normalized according to the fluorescence intensity of the donor; (b) The
histogram of the emission intensity of MPy1—ESY at 550 nm on the excitation of the
donor (Ax = 384 nm) and acceptor (A, = 500 nm). (c) Fluorescence spectra of
MPy1-SR101 (black line, [MPy1] = 1.0x10> M, [SR101] = 1.0x107 M, A = 384
nm), the donor (red line, A.x = 384 nm) and the acceptor (blue line, A.x = 580 nm). The
fluorescence spectrum of MPyl-SR101 was normalized according to the
fluorescence intensity at 460 nm; (d) The histogram of the emission intensity of
MPy1-SR101 at 610 nm on the excitation of the donor (A = 384 nm) and acceptor
(Aex = 580 nm).
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Figure S57. Fluorescence spectra of a) MPyl and MPyl1-SR101 assembly, b)
MPy1-ESY and MPy1-ESY—-SR101 assembly. [MPy1] = 1.0 x 10~ M.

S41



—
-]
—'
—
=3
~—

4000
—— (hex=384nm) 1400
hex=384 -
a— (ox380nm) _ 1200 Antenna =29
é :: 1000
£ 2000- g 8001
7 ‘®
§ g 600
= 1000 Z 400
200
X T X T : T T T = T ‘ T T T 5 0 T T
350 400 450 500 550 600 650 700 750 384 580
Wavelength / nm Wavelength / nm
() (d)
4000 : Ex;z;::::g 4000+ Antenna =93
—— (hex=580nm)
= = ,
s 3000+ e 3000
o) )
b =
Z 2000 z 2000+
L L
b o
= =
~ 1000 ~ 10001
» T % T E T x T X T s T r T = 0 T T
350 400 450 500 550 600 650 700 750 384 580
Wavelength / nm Wavelength / nm

Figure S58. (a) Fluorescence spectra of MPy1—SR101 (black line, [MPy1] = 1.0x10-
> M, [SR101] = 5.0x10® M, A, = 384 nm), the donor (red line, Ay = 384 nm) and
acceptor (blue line, Ay = 580 nm). The fluorescence intensity of MPy1—SR101 at 460
nm was normalized according to the fluorescence intensity of the donor; (b) The
histogram of the emission intensity of MPy1-SR101 at 610 nm on the excitation of
the donor (Aex = 384 nm) and acceptor (Ax = 580 nm). (c) Fluorescence spectra of
MPy1-ESY-SR101 (black line, [MPy1] = 1.0x10->M, [ESY] = 1.0x107 M, [SR101]
= 5.0x10% M, Aex = 384 nm), the donor (red line, A, = 384 nm) and the acceptor (blue
line, Ax = 580 nm). The fluorescence spectrum of MPyl-ESY—SR101 was
normalized according to the fluorescence intensity at 550 nm; (d) The histogram of
the emission intensity of MPyl-ESY—SR101 at 610 nm on the excitation of the

donor (A = 384 nm) and acceptor (Aex = 580 nm).
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Figure S59. Fluorescence spectra of MPy1 in different solid states: amorphous and

fuming with THF vapor for 5 min (A = 384 nm).
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