Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials for

Stable freestanding two-dimensional anionic electrons in YCl with extremely weak interlayer interaction

Zhenghui Fang,^a Xuguang Wang,^a Xinyu Cao,^a Hao Yang,^a Feifei Yin,^a

Kai Liu^b and Xiao Zhang^{a*}

^aState Key Laboratory of Information Photonics and Optical Communications & School of Science,

Beijing University of Posts and Telecommunications, Beijing 100876, China

^bDepartment of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micronano Devices, Renmin University of China, Beijing 100872, China

*Corresponding author: zhangxiaobupt@bupt.edu.cn

Figure S1. Schematic diagram of each sampled structure in the simulation of the quasi-static process of relative sliding between YCl bilayers. When stacked in AA sequence, the relative sliding between the layers of the YCl bilayer is considered as zero, corresponding to the origin of the coordinates (marked as O). One sampling structure is taken for every a/18 (0.20 Å) sliding of the upper layer with respect to the fixed lower layer (ML YCl in the background), corresponding to the intersection point in the rhombic grid. The displacement of the relative sliding between the layers of each sampling structure is the distance from its corresponding intersection point to the origin. Considering symmetry, all points corresponding to irreducible structures are marked in red.

Figure S2. The elastic energy curves of ML YCl under applied uniaxial and biaxial strains and their second-order polynomial fitting curves. Insets: parameters of the second-order polynomial fit and schematic diagrams of applied uniaxial and biaxial strains.

The in-plane second-order elastic constants play a crucial role in understanding the mechanical and dynamic properties of 2D materials by providing information on material stiffness and stability. Applying a small strain to the equilibrium lattice configuration in the linear elastic region, the elastic energy change of a 2D material in the harmonic approximation can be given by the following formula [1]

$$E_{elastic}^{2D} = S\left(\frac{1}{2}C_{11}\varepsilon_{1}^{2} + \frac{1}{2}C_{22}\varepsilon_{2}^{2} + C_{12}\varepsilon_{1}\varepsilon_{2} + 2C_{16}\varepsilon_{1}\varepsilon_{6} + 2C_{26}\varepsilon_{2}\varepsilon_{6} + 2C_{66}\varepsilon_{6}^{2}\right)$$

where $E_{elastic}^{2D}$ is the difference between the total energy of the equilibrium and distorted lattice cells,

S is the area of the equilibrium 2D material, C_{ij} (*i*,*j* = 1,2,6) is the in-plane stiffness tensor in N/m, and ε_i (*i* = 1,2,6) is the independent component of the strain tensor ε . The lattice vector relationship between the distorted lattice and the equilibrium lattice is given by

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot (I + \varepsilon)$$

where I is the unit matrix. The strain tensor ε is expressed as the following vector with six independent components

$$\varepsilon = \begin{pmatrix} \varepsilon_1 & \frac{\varepsilon_6}{2} & \frac{\varepsilon_5}{2} \\ \frac{\varepsilon_6}{2} & \varepsilon_2 & \frac{\varepsilon_4}{2} \\ \frac{\varepsilon_5}{2} & \frac{\varepsilon_4}{2} & \varepsilon_3 \end{pmatrix}$$

As a 2D material, the ML YCl belongs to the hexagonal crystal system, which has only two independent elastic constants C_{11} and C_{12} considering symmetry.[2] In the energy-strain approach, the elastic constants can be derived from the quadratic coefficients of the elastic energy-strain curve. To obtain the elastic constant C_{11} , a uniaxial strain along the *a*-axis is applied to the equilibrium

lattice

$$\varepsilon_{Uniaxial} = \begin{pmatrix} \varepsilon_1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

The elastic energy of the ML YCl under uniaxial strain is

$$E_{Uniaxial}^{2D} = S(\frac{1}{2}C_{11}\varepsilon_1^2)$$

Comparing the quadratic coefficients of the elastic energy-uniaxial strain fitting curve (i.e., the blue curve in Fig. S2), $C_{11} = 74.289$ N/m can be obtained. Similarly, to obtain the constant C_{12} , an equal biaxial strain along the *a* and *b* axes is applied to the equilibrium lattice

$$\varepsilon_{Biaxial} = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The elastic energy of the ML YCl under biaxial strain is

$$E_{Biaxial}^{2D} = S\left(\frac{1}{2}C_{11}\varepsilon_1^2 + \frac{1}{2}C_{22}\varepsilon_2^2 + C_{12}\varepsilon_1\varepsilon_2\right) = S\left(C_{11}\varepsilon_1^2 + C_{12}\varepsilon_1\varepsilon_2\right) = S\left(C_{11} + C_{12}\right)\varepsilon_1^2$$

Comparing the quadratic coefficients of the elastic energy-biaxial strain fitting curve (i.e., the red curve in Fig. S2) and C_{11} , $C_{12} = 23.076$ N/m can be obtained. The two calculated elastic constants satisfy the mechanical stability criterion: $C_{11} > 0$ and $C_{11} > |C_{12}|$, meaning that the ML YCl is mechanically stable.[2] Using these known elastic constants, the in-plane Young's modulus (Y_{2D}), shear modulus (G_{2D}), and Poisson's ratio (v_{2D}) of YCl can be obtained as follows

$$\begin{cases} Y_{2D} = \frac{C_{11}^2 - C_{12}^2}{C_{11}} = 67.121 \, N/m \\ G_{2D} = \frac{C_{11} - C_{12}}{2} = 25.606 \, N/m \\ v_{2D} = \frac{C_{12}}{C_{11}} = 0.311 \end{cases}$$

The vertical deformation h occurring under gravity in an independent ML YCl of size l can be estimated by the following equation [1]

$$\frac{h}{l} \approx \left(\frac{\rho g l}{Y_{2D}}\right)^{\frac{1}{3}}$$

where g is the gravitational acceleration, ρ is the density of ML YCl ($\rho = 1.29 \times 10^{-4}$ kg m⁻²). It is found that the ratio of vertical deformation to film size h/l is only 1.23×10^{-3} even for a large YCl film with $l = 100 \mu$ m. This result indicates that the in-plane stiffness of ML YCl is sufficient to avoid curling and makes itself form a freestanding film.

Figure S3. Top and side views of H₂, H₂O, N₂, and O₂ absorbed on the ML (a) YCl, (b) Ca₂N, and (c) Y₂C. Red, blue, cyan, brown, white, orange, and silver balls denote chlorine, yttrium, calcium, carbon, hydrogen, oxygen, and nitrogen atoms, respectively.

Figure S4. Top views of the initial and final snapshots of 2D systems with gaseous phase oxygen after 5.0 ps AIMD simulations at the temperature of 300 K for ML (a) Ca_2N , (b) Y_2C , and (c) YCl.

Figure S5. The integral of the COHP (ICOHP) of the local chemical bonds between the atoms in the bulk YCl.

		$\frac{E_{\rm b} ({\rm meV/Å^2})}{E_{\rm b} ({\rm meV/Å^2})}$			Experimental 3D parent structure(s)			
	Formula	Space group	DF2-C09	rVV10	Formula	Source DB	DB ID	
*	SiH	P3m1	9.0	13.0	Si ₂ H ₂	ICSD	41478	
*	BN	P-6m2	19.4	24.4	B_2N_2	ICSD	186248	
*	W_2N_3	P - 6m2	26.3	39.8	W_4N_6	ICSD	186207	
*	PbO	P4/nmm	7.8	14.3	$Ag_2Pb_2O_2Br_2$	ICSD	33913	
	FeO ₂	Pmmn	16.3	29.8	Fe_2O_4	COD	9015156	
	NiO ₂	P3m1	16.6	27.6	NiO ₂	COD	1522025	
	PtO ₂	P3m1	19.3	32.3	Pt_2O_4	ICSD	24923	
	Tl ₂ O	$P\overline{3}m1$	19.4	27.3	Tl_4O_2	COD	1528007	
	CoO ₂	$P\overline{3}m1$	22.6	34.3	CoO_2	COD	1522027	
*	SnO	P4/nmm	29.8	34.6	Sn_2O_2	COD	7206470	
	SnO	C2/m	-	28.4	Sn_4O_4	ICSD	424729	
	GaS	P - 6m2	15.8	20.8	Ga_4S_4	ICSD	635254	
	GaS	P 3 m1	16.1	20.8	Ga_2S_2	ICSD	40824	
	SnS_2	P3m1	16.7	23.7	Sn_2S_4	ICSD	43003	
	HfS_2	P3m1	18.2	23.2	HfS_2	ICSD	638847	
	ZrS_2	P 3 m1	19.0	24.1	ZrS_2	COD	5910006	
	Tl_2S	P3m1	19.2	-	Tl_2S	COD	9012278	
	MoS_2	P ⁻ 6m2	21.6	28.8	Mo_2S_4	ICSD	644259	
	TaS_2	P3m1	22.3	27.6	TaS_2	COD	9011539	
	WS_2	P ¯ 6m2	22.7	29.9	WS_2	COD	9012192	
	NbS_2	P3m1	23.2	28.0	NbS ₂	ICSD	24755	
	TaS_2	$P\overline{6}m2$	23.2	28.6	TaS_2	ICSD	651083	
	FeS	P4/nmm	23.3	29.4	Fe_2S_2	COD	9011800	
	TiS ₂	$P\overline{3}m1$	23.8	27.4	TiS_2	COD	1010275	
	NbS_2	$P\overline{6}m2$	24.3	29.0	NbS_2	ICSD	237034	
*	PdS_2	$P2_{1}/c$	27.1	31.5	Pd_4S_8	COD	2310589	
	PtS ₂	$P\overline{3}m1$	27.3	33.0	PtS ₂	COD	5910085	
	VS_2	$P\overline{3}m1$	27.7	31.2	VS_2	ICSD	651361	
	MoS_2	P3m1	28.7	33.5	MoS_2	ICSD	26622	
*	GeS	$Pmn2_1$	37.3	34.8	Ge ₄ S ₄	COD	9008784	
	InSe	P̄6m2	14.9	20.8	In_4Se_4	COD	9008967	
	GaSe	P6m2	15.1	20.4	Ga ₄ Se ₄	COD	9008968	
	In_2Se_3	<i>C</i> 2	16.1	23.5	In_2Se_3	ICSD	602266	
	SnSe ₂	P3m1	17.3	25.0	SnSe ₂	ICSD	43857	
	HfSe ₂	P3m1	18.8	23.9	HfSe ₂	ICSD	182678	
	Bi ₂ Se ₃	P3m1	19.6	26.6	Bi ₂ Se ₃	COD	9011965	
	$ZrSe_2$	$P\overline{3}m1$	20.0	25.0	ZrSe ₂	COD	5910026	
	MoSe ₂	P̄6m2	20.4	28.4	Mo_2Se_4	ICSD	644346	

Table S1. Easily exfoliated binaries with up to six atoms per unit cell.[3] If a 2D substructure can be exfoliated from multiple 3D parents, the most easily exfoliated ones (corresponding to the smallest E_b) are listed. In this table, binaries that do not have sandwich-like structures wrapped by chalcogen and halogen elements are marked with the asterisk.

	TaSe ₂	P-6m2	22.6	28.2	Ta_2Se_4	ICSD	651956
	WSe ₂	P - 6m2	22.6	30.0	W_2Se_4	COD	9012193
	FeSe	P4/nmm	22.6	29.3	Fe_2Se_2	ICSD	290411
	TaSe ₂	P3m1	23.1	29.1	TaSe ₂	ICSD	651954
	CrSe ₂	C2/m	23.3	29.7	CrSe ₂	ICSD	626718
	NbSe ₂	P-6m2	23.5	28.8	Nb_2Se_4	COD	9014575
	TiSe ₂	$P\overline{3}m1$	24.0	28.2	TiSe ₂	COD	1010276
	VSe ₂	P3m1	25.4	30.2	VSe ₂	ICSD	86520
	NbSe ₂	$P\overline{3}m1$	27.1	32.0	NbSe ₂	ICSD	76576
	AuSe	P2/m	27.7	33.3	Au_2Se_2	COD	1510294
	ReSe ₂	P̄6m2	28.3	30.3	Re_4Se_8	ICSD	650091
	PtSe ₂	P3m1	29.6	35.2	PtSe ₂	COD	9009117
	InSe	C2/m	32.7	33.7	In_2Se_2	ICSD	32714
*	GeSe	$Pmn2_1$	36.0	33.9	Ge ₄ Se ₄	COD	1528768
	Cu ₂ Te	C2/m	14.6	20.5	Cu ₄ Te ₂	ICSD	77055
	GaTe	P - 6m2	15.7	20.6	Ga ₄ Te ₄	ICSD	43328
	SiTe ₂	P3m1	19.9	25.6	SiTe ₂	COD	9009119
	WTe ₂	$P2_{1}/m$	22.1	28.4	W_4Te_8	COD	2310355
	CuTe	Pmmn	22.2	27.0	Cu_2Te_2	COD	1526237
	Bi ₂ Te ₃	P3m1	23.0	28.7	$\mathrm{SnBi}_4\mathrm{Te}_7$	ICSD	236253
	HfTe ₂	P3m1	23.4	26.4	HfTe ₂	ICSD	603713
	MoTe ₂	$P2_{1}/m$	24.5	30.1	Mo_4Te_8	COD	2310356
	WTe ₂	P - 6m2	24.7	30.0	W_2Te_4	ICSD	653170
	MoTe ₂	P 7 6m2	25.2	30.4	Mo_2Te_4	COD	9009147
	Sb_2Te_3	P3m1	25.2	30.0	Sb_2Te_3	COD	9007590
	ZrTe ₂	$P\overline{3}m1$	26.1	28.4	ZrTe ₂	ICSD	653213
	FeTe	P4/nmm	26.6	31.6	Fe_2Te_2	ICSD	169974
	VTe ₂	$P\overline{3}m1$	27.1	30.1	VTe ₂	ICSD	603582
*	PbTe	<i>P</i> 3 <i>m</i> 1	27.5	33.0	$Pb_2Bi_2Te_5$	ICSD	42708
	TiTe ₂	P3m1	28.1	30.2	TiTe ₂	COD	1008063
	NbTe ₂	$P\overline{3}m1$	28.3	31.8	NbTe ₂	ICSD	645529
	$Hf_{3}Te_{2}$	P4/mmm	31.7	33.1	Hf_3Te_2	ICSD	75936
*	SnTe	$Pmn2_1$	34.2	33.2	Sn ₄ Te ₄	ICSD	652743
*	T1F	P4/nmm	14.1	20.1	Tl_2F_2	COD	1520825
	NbF_4	P4/mmm	15.1	29.1	NbF ₄	ICSD	25768
	PbF_4	P4/mmm	15.7	29.0	PbF ₄	COD	1528583
	SnF_4	P4/mmm	22.8	33.3	SnF_4	COD	1528582
*	AgF_2	$P2_{1}/c$	28.2	42.5	Ag_4F_8	COD	1509321
	FeCl ₂	P3m1	9.7	15.2	FeCl ₂	COD	9014952
	$ZnCl_2$	P4m2	9.8	15.9	Zn_2Cl_4	ICSD	26152
	$CoCl_2$	P3m1	10.7	15.9	CoCl ₂	COD	9014719
	$CdCl_2$	P3m1	11.0	17.8	$CdCl_2$	COD	9009125
	LaCl	P3m1	11.0	16.8	La_2Cl_2	ICSD	24410
	$ZnCl_2$	P3m1	11.1	16.8	ZnCl ₂	COD	9009136

	TbCl	P3m1	11.2	-	Tb ₂ Cl ₂	ICSD	23351
	YC1	P3m1	12.0	17.6	Y_2Cl_2	ICSD	30708
	MgCl ₂	P3m1	12.3	17.7	MgCl ₂	COD	9009129
	CuCl ₂	<i>C</i> 2/ <i>m</i>	13.4	19.7	CuCl ₂	COD	9001506
	ScCl	P3m1	13.8	19.4	Sc_2Cl_2	COD	4343683
	PdCl ₂	$P2_{1}/c$	14.0	21.3	Pd_2Cl_4	ICSD	421221
	RbCl	P4/nmm	14.4	18.7	$Rb_2Ni_2C_4N_4Cl_2$	ICSD	380471
	ZrCl ₂	P6m2	14.5	21.4	ZrCl ₂	ICSD	30052
	ZrCl	P3m1	14.7	21.8	Zr_2Cl_2	ICSD	20145
	$MnCl_2$	<i>C</i> 2/ <i>m</i>	14.8	21.5	MnCl ₂	COD	9009130
	TiCl ₂	P3m1	14.9	21.6	TiCl ₂	COD	9009121
	VCl ₂	<i>C</i> 2/ <i>m</i>	15.5	22.1	VCl ₂	COD	1528165
	NiCl ₂	P3m1	16.3	22.6	NiCl ₂	COD	9009132
*	AgBr	$P2_{1}/m$	7.8	14.3	$Ag_2Pb_2O_2Br_2$	ICSD	33913
	MgBr ₂	P3m1	10.2	15.3	MgBr ₂	COD	8103685
	CdBr ₂	P3m1	10.8	17.5	CdBr ₂	COD	9009124
	LaBr ₂	P̄6m2	11.2	16.8	La_2Br_4	ICSD	65481
	$ZnBr_2$	P3m1	11.4	20.0	ZnBr ₂	COD	9011540
	LaBr	P3m1	11.7	17.5	La_2Br_2	ICSD	23354
	TbBr	P3m1	12.2	17.9	Tb_2Br_2	ICSD	23353
	AuBr	Cmme	12.7	21.0	Au_4Br_4	COD	1510610
	$MnBr_2$	C2/m	15.0	21.6	MnBr ₂	ICSD	67500
	TiBr ₂	P3m1	15.3	21.8	TiBr ₂	ICSD	26078
	FeBr ₂	P3m1	15.5	22.2	FeBr ₂	COD	9009102
	CuBr	P4/nmm	15.5	22.9	Cu_2Br_2	COD	9013931
	CrBr ₂	P1	15.5	22.0	CrBr ₂	ICSD	23903
	ZrBr	P3m1	15.6	22.5	Zr_2Br_2	COD	4343762
	VBr ₂	<i>C</i> 2/ <i>m</i>	15.8	22.1	VBr ₂	ICSD	246906
	CoBr ₂	P3m1	16.8	23.3	CoBr ₂	COD	9016149
	NiBr ₂	P3m1	18.1	24.4	NiBr ₂	COD	9008013
	PbI ₂	P3m1	8.6	16.1	Pb_2I_4	COD	9009143
	GeI ₂	P̄6m2	8.8	13.3	GeI ₂	COD	1010319
	CaI_2	P3m1	9.9	15.3	CaI ₂	COD	9009097
	TmI_2	P3m1	10.5	16.1	TmI_2	ICSD	43731
	YbI ₂	P3m1	10.6	16.1	YbI ₂	ICSD	77907
	CdI ₂	P3m1	10.7	17.2	Cd_3I_6	ICSD	20745
	MgI_2	P3m1	10.8	16.2	MgI_2	COD	9009108
	HgI_2	P4m2	11.5	18.8	Hg_2I_4	COD	9014434
	ZnI_2	P3m1	11.7	17.4	ZnI_2	COD	9009137
	GeI ₂	P3m1	12.1	17.6	Ge ₃ I ₆	ICSD	23176
	AgI	P4/nmm	13.5	20.8	Ag_2I_2	COD	1509387
	CuI	P3m1	14.7	20.9	Cu ₆ I ₆	ICSD	30363
	ZrI_2	$P2_{1}/m$	14.8	21.0	Zr_4I_8	ICSD	26418
	CuI	<i>C</i> 2/ <i>m</i>	14.8	21.7	Cu_2I_2	COD	9013923

AuI	Cmme	15.1	22.4	Au_4I_4	COD	9008986
LaI_2	P4/mmm	15.6	21.2	LaI_2	COD	1529708
VI ₂	C2/m	16.4	22.4	VI ₂	ICSD	246907
NdI_2	P4/mmm	16.4	21.9	NdI_2	ICSD	72190
CrI ₂	$P2_{1}/m$	16.8	22.5	CrI ₂	ICSD	4073
FeI ₂	P3m1	16.9	23.3	FeI ₂	COD	9009103
MnI_2	C2/m	17.0	23.3	MnI_2	COD	9009110
CoI ₂	C2/m	18.3	24.3	CoI ₂	COD	9009100
SrI_2	Pmmm	21.2	26.6	$\mathrm{Sr}_4\mathrm{I}_8$	ICSD	203137
NiI ₂	P3m1	21.5	26.9	NiI ₂	COD	9009133

References:

- [1] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Vol 7: Theory and Elasticity, Elsevier, 2013.
- [2] M. Maździarz, Comment on 'The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals', *2D Mater.*, 2019, **6**(4), 048001.
- [3] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti and G. Pizzi, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, *Nat. Nanotechnol.*, 2018, 13(3), 246-252.