Electronic Supplementary Information

Boosting ultralong organic phosphorescence performance by synergistic heavy-atom effect and multiple intermolecular interactions in molecular crystal

Huiting Mao, ${ }^{\ddagger \text { ab,c }}$ Jing Gao, ${ }^{\ddagger a}$ Weijun Zhao, ${ }^{\mathrm{d}}$ Tingting Wang, ${ }^{\text {a }}$ Guo-Gang Shan, ${ }^{\mathrm{a},{ }^{*}}$ Yun Geng, ${ }^{\text {a,* }}$ Kuizhan Shao, ${ }^{a}$ Xinlong Wang ${ }^{\text {a }}$ and Zhongmin Su ${ }^{\text {c* }}$
${ }^{a}$ Institute of Functional Material Chemistry and National \& Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024,

China, E-mail: shangg187@nenu.edu.cn (G. S.), gengv575@nenu.edu.cn (Y. G.)
${ }^{b}$ College of Life Science, Dalian Minzu University, Dalian, 116600, China
${ }^{c}$ College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
E-mail: zmsu@nenu.edu.cn
${ }^{d}$ School of Chemistry and Molecular Engineering, East China University of Science \& Technology, Shanghai, 200237, China
${ }^{\ddagger}$ Authors contributed equally to this paper.

Experimental section

Materials and methods

Unless otherwise noted, all reagents used in the experiments were purchased from commercial sources without further purification. For column chromatography, silica gel with 300~400 mesh was used. These compounds were synthesized according to the similar experimental procedures reported previously. Nuclear magnetic resonance (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) spectra were obtained on a Bruker Avance 500 MHz spectrometer. High-resolution mass spectra (HRMS) were tested on Bruck microtof or Hybrid Quadrupole-Orbitrap GC-MS/MS system (Q Exactive GC). X-ray crystallography was measured by a Bruker Apex CCD II area-detector diffractometer. Ultraviolet absorption spectra were obtained by Cary 500 UV-Vis-NIR spectrophotometer. Steady-state photoluminescence (PL) and phosphorescence spectra were measured using FL-4600 FL spectrophotometer. The lifetime and time-resolved emission spectra were obtained on FLSP920 Edinburgh Fluorescence Spectrometer equipped with a xenon arc lamp (Xe900), a nanosecond hydrogen flash-lamp (nF920), and a microsecond flash-lamp ($\mu \mathrm{F} 900$), respectively. PL quantum efficiency (PLQE) was collected on a Hamamatsu Absolute PL Quantum Yield Spectrometer C11347 under ambient conditions.

Theoretical calculations

The geometrical, electronic structures and relevant photophysical properties are calculated with the Gaussian 16, ${ }^{[1]}$ ADF $2016{ }^{[2]}$ and MOMAP ${ }^{[3]}$ program packages. The density functional theory (DFT) and time-dependent density functional theory (TDDFT) ${ }^{[4]}$ are selected for calculated molecules in ground states and excited states, respectively. The geometrical structures of monomers and dimers taken from the experimental crystals are optimized at B3LYP/6-311G* and B3LYP-D3/6-311G* level, respectively. The excitation energies and oscillator strengths are also calculated at the same computational level. Considering the intermolecular interaction effects, the Quantum Mechanics/Molecular Mechanics (QM/MM) method ${ }^{[5]}$ is used to optimize the geometrical structures of the dimers.

The chosen dimers are calculated at the QM level and the surrounding molecules are treated at MM level with the universal force field (UFF). ${ }^{[6]}$ The spin-orbital coupling (SOC) matrix element values are calculated by the ADF 2016 program package with the B3LYP functional and the ZORA/DZP basis set. ${ }^{[7]}$

The reorganization energy (λ) can be calculated by Nelson's four-point method:
$\lambda_{\mathrm{T}_{1}}=\lambda_{1}(\mathrm{H})+\lambda_{2}(\mathrm{G})=\left[\mathrm{E}\left({ }^{3} \mathrm{H}_{\mathrm{fc}}\right)-\mathrm{E}\left({ }^{3} \mathrm{H}_{\text {opt }}\right)\right]+\left[\mathrm{E}\left({ }^{0} \mathrm{G}_{\mathrm{fc}}\right)-\mathrm{E}\left({ }^{0} \mathrm{G}_{\mathrm{opt}}\right)\right]$
$\lambda_{\mathrm{S}_{0}}=\lambda_{1}(\mathrm{H})+\lambda_{2}(\mathrm{G})=\left[\mathrm{E}\left({ }^{1} \mathrm{H}_{\mathrm{fc}}\right)-\mathrm{E}\left({ }^{1} \mathrm{H}_{\text {opt }}\right)\right]+\left[\mathrm{E}\left({ }^{0} \mathrm{G}_{\mathrm{fc}}\right)-\mathrm{E}\left({ }^{0} \mathrm{G}_{\text {opt }}\right)\right]$
where opt and fc represent the optimized states and Franck-Condon excited states, respectively. The spin multiplicity is labeled as the superscript.

The MOMAP software is used to calculate the Huang-Rhys factor:

$$
\begin{equation*}
\mathrm{HR}_{\mathrm{j}}=\omega_{\mathrm{j}} \mathrm{D}_{\mathrm{j}}^{2} / 2 \hbar \tag{3}
\end{equation*}
$$

Where ${ }^{\omega_{j}}$ represents the frequency of a certain vibration mode, D_{j} represents the displacement vector in a certain vibration mode.

Single crystal cultivation

All the crystals were obtained via slow evaporation in a mixture of dichlromethane/ethyl acetate $(3: 1, \mathrm{v} / \mathrm{v})$ at room temperature.

The preparation of encryption and anti-counterfeiting patterns

The ink based on o-MOPP and BrTMOPP powder was firstly prepared with aloe vera gel. Then the ink was printed onto a piece of black paper with screen printing technique. After heat treatment for 30 minutes, a pattern with UOP feature was obtained. The lotus, lantern, and "Fu" (made by BrTMOPP) and auspicious cloud (made by o-MOPP) were clearly visualized under 365 nm UV-lamp irradiation. When switching off the UV-lamp, only lotus, lantern, and "Fu" with green emission can be observed by the naked eye. The preparation method of double crane pattern was described above.

Synthesis and characterization

Synthesis of 10-(4-bromo-3-methylphenyl)-10H-phenothiazine 5,5-dioxide (BrMOPP). Into a round-bottom flask was placed toluene solution (100 mL) with phenothiazine (2.00 g , 10 mmol), 1-bromo-4-iodo-2-methylbenzene ($3.58 \mathrm{~g}, 12 \mathrm{~mol}$), potassium tert-butoxide (1.69 g , $15 \mathrm{mmol})$, palladium acetate $(0.11 \mathrm{~g}, 0.5 \mathrm{mmol})$, and tri-tert-butylphosphine $(0.5 \mathrm{~mL}, 0.25$ mmol). Then the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. Then the organic layer was collected and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation, and the residue was purified by column chromatography. Then the collected product was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$, acetic acid (45 mL), and $\mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{~mL})$. After stirring for 24 hours at $60^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and further purified by column chromatography, affording a white solid in a yield of 81%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta[\mathrm{ppm}]$): 8.16 (dd, $J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), $7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 7.24-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 7.10(\mathrm{dd}, J$ $=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 2.50\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta[\mathrm{ppm}]\right): 141.88,140.53,137.92,135.14,132.86,132.56,129.32,126.30$, 123.47, 122.76, 122.24, 117.14, 23.19. MS [m/z]: Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrNO}_{2} \mathrm{~S}: 398.9929$, Found $421.9813[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of 10-(4-bromo-3,5-dimethylphenyl)-10H-phenothiazine 5,5-dioxide (BrDMOPP). Following the similar procedure to BrMOPP, just changing the 1-bromo-4-iodo-2-methylbenzene to 2-bromo-5-iodo-1,3-dimethylbenzene. A white solid was obtained in the yield of $78 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta[\mathrm{ppm}]$): $8.16(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$ H), 7.39-7.42 (m, 2H, Ar H), 7.24-7.27 (m, 2H, Ar H), 7.11 (s, 2H, Ar H), 6.68 (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 2.52\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta[\mathrm{ppm}]\right): 141.92,140.52,137.14$, 132.78, 129.63, 128.83, 123.37, 122.63, 122.10, 117.22, 24.09. MS [m/z]: Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}: 413.0085$, Found $435.9983[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of 10-(4-bromo-2,3,5,6-tetramethylphenyl)-10H-phenothiazine 5,5-dioxide (BrTMOPP). Phenothiazine ($2.00 \mathrm{~g}, 10 \mathrm{mmol}$), 1,4-dibromo-2,3,5,6-tetramethylbenzene
$(3.52 \mathrm{~g}, 12 \mathrm{~mol})$, sodium tert-butoxide $(1.44 \mathrm{~g}, \quad 15 \mathrm{mmol})$, bis(dibenzylideneacetone)palladium ($1.16 \mathrm{~g}, 2 \mathrm{mmol}$), and tri-tert-butylphosphine (0.5 mL , $0.25 \mathrm{mmol})$ were added in toluene $(100 \mathrm{~mL})$. Then the mixture was stirred at $110^{\circ} \mathrm{C}$ for 12 hours. And then, The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated by rotary evaporation under vacuum and the product was purified by column chromatography. Then the collected product was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$, acetic acid (45 mL), and $\mathrm{H}_{2} \mathrm{O}_{2}$ (2 mL). After stirring for 24 hours at $60^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and further purified by column chromatography, affording a white solid in a yield of 61%. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta[\mathrm{ppm}]\right): 8.20(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 8.40-7.43$ (m, 2H, Ar H), 7.25$7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 6.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 2.53\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}, \delta[\mathrm{ppm}]\right): 138.86,136.94,134.85,133.34,130.57,123.67,122.71$, 122.26, 116.17, 21.44, 15.68. MS [m/z]: Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}_{2} \mathrm{~S}: 441.0398$, Found 464.0291 $[\mathrm{M}+\mathrm{Na}]^{+}$.

Scheme S1. Synthetic routes and chemical structures of BrMOPP, BrDMOPP, and BrTMOPP. (i) t - $\mathrm{BuOK}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}(t-\mathrm{Bu})_{3}$, Toluene, $110{ }^{\circ} \mathrm{C}$. (ii) t - $\mathrm{BuONa}, \mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{P}(t-$ $\mathrm{Bu})_{3}$, Toluene, $110^{\circ} \mathrm{C}$. (iii) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{COOH}, 60^{\circ} \mathrm{C}$.

OPP

o-MOPP
$0.5 \% 185 \mathrm{~ms} \quad 0.3 \% 245 \mathrm{~ms}$

Scheme S2. Chemical structures of OPP and o-MOPP.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{B r M O P P}$ in CDCl_{3}.
$\stackrel{\infty}{\stackrel{\infty}{1}}$

Fig. S2 ${ }^{13} \mathrm{C}$ NMR of BrMOPP in CDCl_{3}.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{B r D M O P P}$ in CDCl_{3}.

8
N
i

Fig. S4 ${ }^{13} \mathrm{C}$ NMR of BrDMOPP in CDCl_{3}.

$\stackrel{\square}{7}$

Fig. $\mathbf{S 5}^{1}{ }^{1} \mathrm{H}$ NMR of $\mathbf{B r T M O P P}$ in CDCl_{3}.

V
M
-

Fig. S6 ${ }^{13} \mathrm{C}$ NMR of BrTMOPP in CDCl_{3}.

Table S1. Crystal data and structure refinement of these compounds.

Name	BrMOPP	BrDMOPP	BrTMOPP
CCDC	2042977	2042978	2042979
Formula	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrNO}_{2} \mathrm{~S}$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}$	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}_{2} \mathrm{~S}$
Formula weight	400.28	414.31	442.36
Crystal system	triclinic	triclinic	triclinic
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$	$\mathrm{P}-1$
	$\mathrm{a} 8.126(2)$	$\mathrm{a} 8.2210(16)$	$\mathrm{a} 8.3574(8)$
Cell Lengths $(\mathbf{\AA})$	$\mathrm{b} 8.146(2)$	$\mathrm{b} 8.4240(17)$	$\mathrm{b} 9.3223(11)$
	$\mathrm{c} 13.660(4)$	$\mathrm{c} 14.349(3)$	$\mathrm{c} 14.2727(16)$
	$\alpha 95.851(15)$	$\alpha 94.358(15)$	$\alpha 73.231(7)$
Cell Angles ($\left.{ }^{\circ}\right)$	$\beta 97.291(16)$	$\beta 98.812(13)$	$\beta 83.188(6)$
	$\gamma 112.652(14)$	$\gamma 114.597(13)$	$\gamma 64.864(5)$
Cell Volume $\left(\mathbf{A}^{\mathbf{3}}\right)$	$816.4(4)$	$882.0(3)$	$963.87(19)$
\mathbf{Z}	2	2	2
$\mathbf{D}_{\text {calcd. }}\left(\mathbf{g} \mathbf{~ m}^{-3}\right)$	1.628	1.560	1.524
F(000)	404.0	420.0	452.0
$\mathbf{R}_{\text {int }}$	0.0664	0.0939	0.0747
$\mathbf{F}^{\mathbf{2}}$	1.038	1.039	1.074

$\mathbf{R}_{1}{ }^{\mathbf{a}}, \mathbf{w R}_{\mathbf{2}}{ }^{\mathbf{b}}$	$0.0804,0.2703$	$0.0809,0.2200$	$0.0446,0.0971$
$\mathbf{R}_{\mathbf{1}}, \mathbf{w R}_{\mathbf{2}}$	$0.0890,0.2865$	$0.1142,0.2506$	$0.0658,0.1090$
${ }^{\mathrm{a}} \mathrm{R}_{1}=\Sigma\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| / \Sigma\left\|F_{o}\right\| .{ }^{\mathrm{b}} \mathrm{wR}_{2}=\left\|\Sigma \mathrm{W}\left(\left\|F_{o}\right\|^{2}-\left\|F_{c}\right\|^{2}\right)\right\| / \Sigma\left\|\mathrm{W}\left(F_{o}{ }^{2}\right)^{2}\right\|^{1 / 2}$.			

Table S2. The intermolecular interactions of BrMOPP, BrDMOPP, and BrTMOPP crystals.

BrMOPP		BrDMOPP		BrTMOPP	
Types of bond	distance ($\mathbf{\AA}$)	Types of bond	distance ($\mathbf{\AA}$)	Types of bond	distance ($\mathbf{(\AA)}$
$\pi \ldots \pi$	3.387	$\pi \ldots . . \pi$	3.458	$\pi \ldots \pi$	3.496
C-H... Br	3.035	C-H... Br	2.855	C-H... Br	2.964
C-H... π	2.864	-	-	C-H... π	2.875
				C-H...H-C	2.378
	2.472		2.496		2.446
C-H...O	2.561	C-H...O	2.568	C-H...O	2.470
	2.625		2.690		2.705
$\mathrm{S}=\mathrm{O} \ldots \mathrm{C}$	3.129	$\mathrm{S}=\mathrm{O} \ldots \mathrm{C}$	3.156	$\mathrm{S}=\mathrm{O} \ldots \mathrm{C}$	3.218

Fig. S7 (a) Absorption spectra and (b) steady-state PL spectra of BrMOPP, BrDMOPP, and BrTMOPP in dilute dichloromethane solutions $\left(10^{-5} \mathrm{M}\right)$ under ambient conditions.

Fig. S8 PL spectra of BrMOPP, BrDMOPP, and BrTMOPP in different solvents (hexane, dichloromethane, ethyl acetate, and acetonitrile) with concentration of $5 \times 10^{-5} \mathrm{M}$.

Fig. S9 Time-resolved PL decay curves of (a) BrMOPP at 359 nm, (b) BrDMOPP at 359 nm , (c) BrTMOPP at 360 nm in dichloromethane solutions under ambient conditions.

Fig. S10 Time-resolved PL decay curves of (a) BrMOPP at 375 nm , (b) BrDMOPP at 375 nm , (c) BrTMOPP at 368 nm in crystal state under ambient conditions.

Table S3. Summarized photophysical data of BrMOPP, BrDMOPP, and BrTMOPP in crystal state at 298 K .

Compound	λ_{F} (nm)	τ_{F} (ns)	Φ_{F} $(\%)$	λ_{P} (nm)	τ_{P} (ms)	Φ_{P} $(\%)$	$k_{\text {isc }}$ $\left(\mathrm{s}^{-1}\right)$	k_{r} $\left(\mathrm{s}^{-1}\right)$	k_{nr} $\left(\mathrm{s}^{-1}\right)$
BrMOPP	375	0.48	4.8	512	391	11.1	2.3×10^{8}	0.28	2.27
BrDMOPP	375	0.51	3.6	500	255	8.4	1.6×10^{8}	0.33	3.59
BrTMOPP	368	0.24	1.6	519	664	4.0	1.7×10^{8}	0.06	1.44

λ_{F} : fluorescent emission peak; τ_{F} : fluorescent lifetime; λ_{P} : phosphorescent emission peak; τ_{F} : phosphorescent lifetime; Φ_{P} : quantum yield.

Fig. S11 (a) Steady-state photoluminescence (PL) (black line) and phosphorescence (Phos) spectra (red line) and (b) the time-resolved fluorescence decay curves of BrMOPP, BrDMOPP, and BrTMOPP doped in PMMA films (5 wt\%) under ambient conditions excited at 330 nm .

Fig. S12 Intermolecular interactions of adjacent dimer molecules in (a) BrMOPP, (b) BrDMOPP, and (c) BrTMOPP crystals.
Monomer

Fig. S13 Calculated the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) of BrMOPP, BrDMOPP, and BrTMOPP in monomer and dimer.

Fig. S14 Calculated energy diagram and spin-orbit coupling constant (ξ) of (a) BrMOPP dimer, (b) BrDMOPP dimer, and (c) BrTMOPP dimer in crystal states.

Fig. S15 The calculated Huang-Rhys factors, the displacement vectors of vibrational modes with the largest values of Huang-Rhys factors, and reorganization energies for BrMOPP, BrDMOPP, and BrTMOPP in crystals at T_{1} states.

References

1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
D. J. Fox, Gaussian 16, Revision B.01, Gaussian Inc., Wallingford CT, 2016.

2 ADF, SCM, Theoretical Chemistry, Virje Universiteit, Amsterdam, The Netherlands, 2016.

3 Y. Niu, W. Li, Q. Peng, H. Geng, Y. Yi, L. Wang, G. Nan, D. Wang and Z. Shuai, Mol. Phys., 2018, 116, 1078-1090.

4 M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439-4449.

5 M. C. Li, M. Hayashi and S. H. Lin, J. Phys. Chem. A, 2011, 115, 14531-14538.
6 Y. C. Duan, Y. Wu, J. L. Jin, D. M. Gu, Y. Geng, M. Zhang and Z. M. Su, Chem. Phys. Chem., 2017, 18, 755-762.

7 E. V. Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1996, 105, 6505-6516.

