Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting information

Sustainable and self-cleaning bilayer coatings for high-efficient daytime

radiative cooling

Meijie Chen*, Dan Pang, Hongjie Yan*

School of Energy Science and Engineering, Central South University, Changsha

410083, China

E-mail: chenmeijie@csu.edu.cn (M. Chen); s-rfy@csu.edu.cn (H. Yan)

1. Calculation of PDRC performance

The concept of passive daytime radiative cooling (PDRC) has attracted much attention as a potential solution to the energy crisis in recent years. PDRC requires high solar reflectance to minimize solar heat gain under direct sunlight, and high mid-infrared emittance to directly radiate energy into outer space at a temperature of ~ 3 K^[1].

The solar reflectance (R_{solar}) is calculated as the ratio of the reflected solar intensity across the solar spectrum ($\lambda = 0.3-2.5 \ \mu m$) to the integral solar intensity in the same range, as shown below:

$$\bar{R}_{solar} = \frac{\int_{\lambda_1}^{\lambda_2} I_{solar}(\lambda) R(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} I_{solar}(\lambda) d\lambda},$$
(1)

where $I_{solar}(\lambda)$ represents the ASTM G173-03 Global solar intensity spectrum at AM 1.5, $R(\lambda)$ is the spectral reflectance of the tested sample.

Similarly, the thermal emittance $\overline{\varepsilon}_{LWIR}$ is expressed as:

$$\bar{\varepsilon}_{LWIR} = \frac{\int_{\lambda_1}^{\lambda_2} I_{bb}(T,\lambda)\varepsilon(T,\lambda)d\lambda}{\int_{\lambda_1}^{\lambda_2} I_{bb}(T,\lambda)d\lambda},$$
(2)

where $I_{bb}(T,\lambda)$ is the spectral intensity emitted by a standard blackbody with a temperature of *T* (25 °C), $\varepsilon(T,\lambda)$ represents the sample's spectral emittance. $\overline{\varepsilon}_{LWIR}$ is for wavelengths in the LWIR window (λ = 8-13 µm).

2. CA with increasing ratio of NaCl and PDMS

Increasing the porosity of the hydrophobic layer ($^{\rho_1}$) can effectively enhance the surface roughness, thereby improving the hydrophobicity. When m_{PDMS}/m_{NaCl} increases from 10:1 to 14:1 for the hydrophobic layer, there is no significant increase of the surface roughness, thereby the CA value only increases from 163° to 165° (Figure S1).

Figure S1 The CA value of coatings with different ratios of NaCl and PDMS (a) 10:1 and (b)14:1.

3. NaCl particles with different radii

Figure S2 (a), (c), (e) The SEM and (b) (d) (f) the size analysis of NaCl particles ($r = 2 \mu m$, 16 μm and 158 μm).

Radius (µm)	Saturated NaCl solution (mL)	EtOH (mL)	Drop rate (mL/min)	Temperature (°C)	Time (min)
2	0.4	20	0.4	30	10
16	3.6	180	0.4	30	20

Table S1 Different radii of NaCl particles under different preparation conditions

References

X. Nie, Y. Yoo, H. Hewakuruppu, J. Sullivan, A. Krishna, and J. Lee, "Cool
 White Polymer Coatings based on Glass Bubbles for Buildings," *Sci. Rep.*, vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-63027-2.