- ¹ Electronic Supplementary Information for
- ² Theoretical Prediction of the Carrier
- ³ Mobilities for M^{II}₂M^{III}–Cl–Layered Double
- ⁴ Hydroxides in the Three-Dimensional
 ⁵ Directions
- 6 Si-Min Xu,^{‡*a} Yu-Quan Zhu,^{‡a} Zi-Ru Chen,^{*a} Jiang-Rong Yang,^a Xudong Chen^{*b}
 7 and Hong Yan^a
- 8 a State Key Laboratory of Chemical Resource Engineering, Beijing University of
- 9 Chemical Technology, Beijing 100029, P. R. China.
- 10 b Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School
- 11 of Physics, Nankai University, Tianjin 300071, P. R. China.
- 12 ‡ S.-M. Xu, and Y.-Q. Zhu contributed equally to this work.
- 13 Corresponding authors
- 14 2019210630@mail.buct.edu.cn (Z.-R. Chen),
- 15 <u>chenxd@email.tjut.edu.cn</u> (X. Chen),
- 16 <u>xsm713@sina.com</u>, <u>Si-MinXu@mail.buct.edu.cn</u> (S.-M. Xu).

2	Contents	
Item	Title	Pagination
Supplementary Table 1	Band Gap Energy, Work Function, and Band Edge Placements of $M^{II}_2M^{III}$ -Cl-LDHs under Lattice Dilation and Compression in <i>x</i> and <i>y</i> Directions	1
Supplementary Table 2	TransferIntegrals,ReorganizationEnergies,GibbsFreeEnergyChanges,TransferRates,andCarrierMobilitiesfor $[Mg_2Ga(OH)_6(OH_2)_7]^+$ usingDifferentExchange-CorrelationFunctionals	3
Supplementary Table 3	Transfer Integrals, Reorganization Energies, Gibbs Free Energy Changes, Transfer Rates, and Carrier Mobilities for Mg ₂ Ga–Cl–LDH Matrix Clusters with Different Sizes	4
Supplementary Figure 1	Phonon dispersion curves of $M^{II}_2M^{III}$ -Cl-LDHs	5
Supplementary Figure 2	Band structures of $Mg_2Fe-Cl-LDH$, Ni ₂ Fe-Cl-LDH, Ni ₂ Ga-Cl-LDH, and Zn ₂ Fe-Cl-LDH without the Hubbard correction	6
Supplementary Figure 3	Linear fitting of the conduction band minimum and valence band maximum shift with respect to the lattice dilation and compression in the y direction for $M^{II}_2M^{III}$ –Cl–LDHs	7

Table S	1. Band	l Gap	Energies	$(E_{\rm g}), W$	Vork Functio	ons (W), V	Valence	e Band Maxi	mum
$(E_{\rm VBM}),$	and	Cond	luction	Band	Minimum	$(E_{\rm CBM})$	of	Mg ₂ FeCl	LDH,
Mg ₂ Ga-	-Cl–LDH	I, N	Ni ₂ Fe–Cl	–LDH,	Ni ₂ Ga–Cl	–LDH,	Zn ₂ Fe	e-Cl-LDH,	and

Zn₂Ga–Cl–LDH under Lattice Dilation and Compression in x and y Directions

			F	14/	F_{-}	F
model	direction	Δl / l_0	\mathcal{L}_{g}		\mathcal{L}_{VBM}	\mathcal{L}_{CBM}
		10/	$\frac{(ev)}{1.910}$	(ev)	<u>(ev)</u> 5 450	$\frac{(ev)}{2.627}$
		-1%	1.019	4.083	-5.459	-3.03/
		-0.5%	1.823	4.348	-3.329	-3.709
	X	0%	1.052	4.733	-3.093	-3.//3
		0.3% 10/	1.8/9	4.389	-5./09	-3.88/
Mg ₂ Fe–Cl–LDH		170	1.009	4.919	-5.604	-3.9/4
		-1/0	1.791	4.072	-5.051	-3.019
		-0.370	1.000	4.015	-5.507	-3.777
	У	0.70	1.012	4.723	-5.557	-3.713
		10/2	1.827	4.555	-5.515	-3.071
		1 /0	1.827 A 160	4.024	-3.400	-3.040
		-1 /0 -0 5%	4.107	ч.755 4 764	_4 838	-0.885
	r	-0.570	4.135	4 729	_4 802	-0.878
	л	0.5%	4 1 2 7	4 728	_4 792	-0.865
		1%	4.127	4.726	_4.792	-0.856
Mg ₂ GaClLDH		_1%	4 167	4.720	-4 843	-0.876
		_0.5%	4 143	4 749	_4 820	-0.878
	v	0%	4 125	4 742	-4 804	-0.879
	y	0.5%	4.097	4.739	-4.788	-0.882
		1%	4.075	4.717	-4.755	-0.891
		-1%	1.910	4.660	-5.615	-3.421
		-0.5%	1.887	4.433	-5.499	-3.489
	x	0%	1.875	4.359	-5.407	-3.605
		0.5%	1.859	4.669	-5.377	-3.639
		1%	1.843	4.665	-5.297	-3.743
Ni ₂ Fe–Cl–LDH		-1%	1.695	4.684	-5.531	-3.837
		-0.5%	1.695	4.631	-5.478	-3.784
	v	0%	1.669	4.487	-5.421	-3.703
	y	0.5%	1.662	4.459	-5.361	-3.653
		1%	1.638	4.482	-5.290	-3.628
		-1%	2.554	4.746	-6.024	-4.169
		-0.5%	2.556	4.746	-5.973	-4.108
Ni ₂ Ga–Cl–LDH	x	0%	2.571	4.556	-5.941	-4.071
		0.5%	2.572	4.554	-5.860	-4.008

		1%	2.573	4.542	-5.829	-3.955
		-1%	2.531	4.598	-6.286	-4.048
		-0.5%	2.545	4.576	-6.273	-4.033
	У	0%	2.545	4.576	-6.261	-4.024
		0.5%	2.538	4.617	-6.259	-4.014
		1%	2.547	4.578	-6.248	-4.005
		-1%	2.187	4.724	-5.818	-3.630
		-0.5%	2.176	4.763	-5.839	-3.645
	x	0%	2.197	4.772	-5.851	-3.653
		0.5%	2.184	4.747	-5.861	-3.665
7n Fa Cl I DU		1%	2.174	4.764	-5.871	-3.677
ZII2FE-CI-LDH		-1%	1.485	4.696	-5.399	-4.003
		-0.5%	1.355	4.747	-5.424	-4.025
	У	0%	1.375	4.712	-5.439	-4.070
		0.5%	1.390	4.789	-5.466	-4.070
		1%	1.396	4.768	-5.484	-4.094
		-1%	3.131	4.813	-4.879	-1.518
		-0.5%	3.135	4.793	-4.861	-1.547
	x	0%	3.093	4.798	-4.852	-1.536
		0.5%	3.131	4.785	-4.850	-1.520
Zn ₂ Ga–Cl–LDH		1%	3.132	4.786	-4.844	-1.520
		-1%	3.109	4.803	-4.857	-1.549
		-0.5%	3.118	4.797	-4.856	-1.538
	У	0%	3.116	4.788	-4.846	-1.535
		0.5%	3.111	4.790	-4.845	-1.530
		1%	3.109	4.783	-4.838	-1.528

Table S2. Transfer Integral V, Reorganization Energy λ , Gibbs Free Energy Change ΔG , Transfer Rate k, and Carrier Mobility μ for $[Mg_2Ga(OH)_6(OH_2)_7]^+$ Using Different Exchange-Correlation Functionals

exchange- correlation functional	charge carrier	V (eV)	λ (eV)	ΔG (eV)	k (s^{-1})	μ (cm ² ·V ⁻¹ ·s ⁻ ¹)
B3LYP	e h	0.049	2.20	6.54	4 × 10 ⁻¹³³	5×10^{-164}
M06	e h	0.030	2.30	4.56	2×10^{-73}	2×10^{-104}
PBE	e h	0.088	2.61	3.75	6 × 10 ⁻⁵²	9 × 10 ⁻⁸³

Table S3. Transfer Integrals V, Reorganization Energies λ , Gibbs Free Energy Changes ΔG , Transfer Rates k, and Carrier Mobilities μ for Carrier Transportation in Mg₂Ga-Cl-LDH Matrix Clusters with Different Sizes

chemical formula	charge carrier	V(eV)	λ (eV)	ΔG (eV)	k (s ⁻¹)	$\mu (\mathrm{cm}^2 \cdot \mathrm{V}^-$ $^1 \cdot \mathrm{s}^{-1})$
[Mg ₂ Al(OH) ₆ (OH ₂) ₇]·Cl	e h	0.049	2.20	6.54	4×10^{-133}	$5 imes 10^{-164}$
$[Mg_{4}Al_{2}(OH)_{12}(OH_{2})_{10}] \cdot 2C$	e h	0.693	1.75	3.44	1 × 10 ⁻⁴⁹	2×10^{-80}
$[Mg_{6}Al_{3}(OH)_{18}(OH_{2})_{12}]\cdot 3C$	e h	0.715	3.27	3.18	2 × 10 ⁻³⁸	2×10^{-69}

Figure S1. Phonon dispersion curves of (a) Mg₂Fe–Cl–LDH, (b) Mg₂Ga–Cl–LDH, (c) Ni₂Fe–Cl–LDH, (d) Ni₂Ga–Cl–LDH, (e) Zn₂Fe–Cl–LDH, and (f) Zn₂Ga–Cl–LDH,

respectively.

Figure S2. Band structures of $Mg_2Fe-Cl-LDH$, $Ni_2Fe-Cl-LDH$, $Ni_2Ga-Cl-LDH$, and $Zn_2Fe-Cl-LDH$ without the Hubbard correction. The band gap energy of each LDH is listed in the bracket.

Figure S3. Linear fitting of the conduction band minimum and valence band maximum shift (Δv) with respect to the lattice dilation and compression ($\Delta l/l_0$) in the y direction for (a) Mg₂Fe–Cl–LDH, (b) Mg₂Ga–Cl–LDH, (c) Ni₂Fe–Cl–LDH, (d) Ni₂Ga–Cl–LDH, (e) Zn₂Fe–Cl–LDH, and (f) Zn₂Ga–Cl–LDH, respectively.