Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Suppression of Sn²⁺ Oxidation and Formation of Large-Size Crystal Grains with Multifunctional Chloride Salt for Perovskite Solar Cell Applications

Minghao Wang,^a Wei Wang,^a Yifan Shen,^a Kun Cao,^a Junwen Chen,^a Xiangqing Zhao,^a Meng Xie^a and Shufen Chen*^a

^aState Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

*Corresponding author (email: iamsfchen@njupt.edu.cn)

Experimental Section

1. Materials

Tin iodide (SnI₂, 99.99%), tin fluoride (SnF₂, 99%), 2,5-diaminohydroquinone dihydrochloride ($C_6H_8N_2O_2 \cdot 2HCl$, 97%), N,N-dimethylformamide (DMF, anhydrous, 99.8%), dimethyl sulfoxide (DMSO, anhydrous, 99.9%), chlorobenzene (CB, anhydrous, 99.8%), and bathocuproine (BCP, 99.9%). All above-mentioned chemicals were obtained from Sigma-Aldrich. Formamidinium iodide (FAI, 99.99%) and methylammonium iodide (MAI, 99.9%) were purchased from Xi'an Polymer Light Technology Corp. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, PVP AI 4083) was purchased from Heraeus Materials Technology Co. Ltd. Buckminsterfullerene (C_{60} , 99%) was purchased from Nano-C Tech. All chemicals were used as received without further purification.

2. Preparation of perovskite solutions

The perovskite solutions were prepared in a glove box with both H_2O and $O_2 < 0.01$ ppm, which were prepared by dissolving MAI (40 mg), FAI (129 mg), SnI_2 (373 mg) and SnF_2 (16 mg) in a mixed solvent of 800 μ L DMF and 200 μ L DMSO. Then the as-prepared solutions were stirred for three days. Before use, add x mol $C_6H_8N_2O_2 \cdot 2HCl$ (x = 0.005, 0.01, and 0.015) to the precursor solutions, and continue stirring until they are dissolved. Finally, the solutions were filtered before use.

3. Device Fabrication

Firstly, the ITO-coated glass substrates (17 mm \times 17 mm) were ultrasonically rinsed with acetone, ethanol and deionized water in sequence. After blown with high purity N_2 and dried in a vacuum with an oven, the ITO substrates were treated with UV-ozone for 12 min. Then, The PEDOT:PSS aqueous solution was filtered with a 0.45 μ m filter before use, and then it was spin-coated onto the patterned ITO glass substrates at 3000 rpm for 30 s, followed by a 120 °C thermal annealing for 30 min. Then perovskite precursor solution was spin-coated on the PEDOT:PSS-coated ITO substrates at 5000 rpm for 60 s, and 120 μ L CB was used as the anti-solvent to treat the perovskite films at the 15th s. After the spin coating was completed, the perovskite film was placed on a 90 °C hot stage to treat for 15 minute. The above operations were all done in a glove box filled with N_2 . Finally, 40 nm C_{60} , 9 nm of BCP and 100 nm of Ag were sequentially deposited by thermal evaporation under a high vacuum of >10-5 Pa, forming a series of PSCs. The active area for all devices is 0.1 cm⁻².

4. Device characterization

The scanning electron microscope (SEM) images of FA_{0.75}MA_{0.25}SnI₃ perovskite films were obtained by using a Hitachi S-4800 field emission scanning electron microscopy. The X-ray diffraction (XRD) patterns were carried out using a Bruker D8 ADVANCE XRD equipment. The steady-state photoluminescence (PL) was measured with a Hamamatsu C12132 fluorescence lifetime spectrometer at an excitation wavelength of 479 nm. The X-ray photoelectron spectroscopy (XPS) spectra of FA_{0.75}MA_{0.25}SnI₃ perovskite films on ITO glass substrate were carried out by using PHI Quantera SXM (ULVAC-PHI) in an ultrahigh-vacuum environment of 5×10⁻¹¹ Pa. The current density-voltage characteristics were carried out using Keithley 2400 under AM 1.5G illuminations (100 mW cm⁻²) from a solar simulator (Oriel Sol3A Class Solar Simulator (94023A)) in a glove box with N_2 atmosphere ($H_2O < 0.1$ ppm and $O_2 < 1$ ppm). The incident photon to current efficiency (IPCE) spectra were carried out by QTest Station 500AD Solar Cell Quantum Efficiency System (CROWNTECH, INC). The ultraviolet photoelectron spectroscopy (UPS) was operated with a He discharged lamp (He I 21.22 eV, Kratos Axis Supra). The electrochemical impedance spectra (EIS) were studied with a CHI660 electrochemical workstation (CH Instrument Inc.), which were measured within a frequency range of 10⁵-1 Hz at 0.4 V under dark condition.

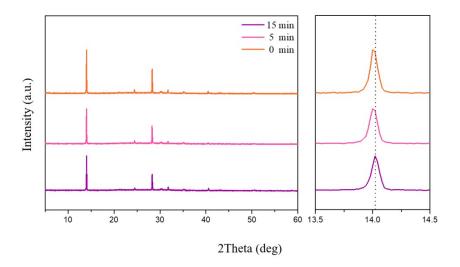


Fig. S1. XRD patterns for the precursor films annealed for 0 min, 5 mins and 15 mins.

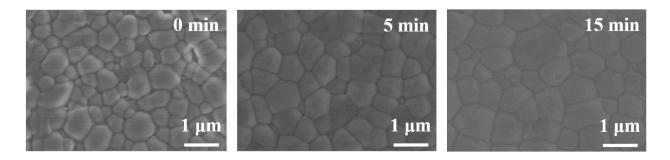
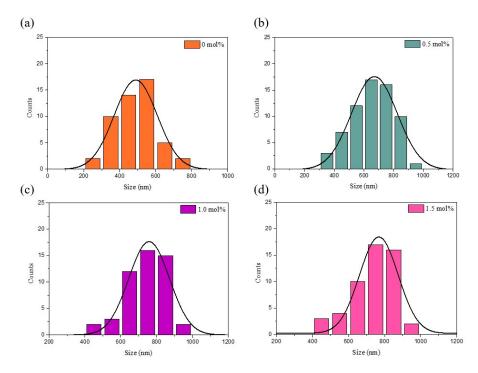



Fig. S2. SEM patterns for the $FA_{0.75}MA_{0.25}SnI_3$ films annealed for 0 min, 5 mins and 15 mins.

Fig. S3. Grain size statistics of the pristine perovskite and $C_6H_8N_2O_2$. 2HCl-incorporated perovskites with different doping concentration from top-view SEM images: (a) 0 mol%, 497 nm, (b) 0.5 mol%, 678 nm, (c) 1.0 mol%, 764 nm, (d) 1.5 mol%, 781 nm.

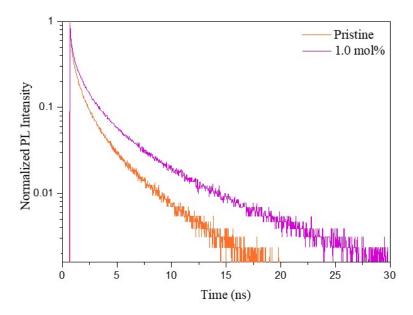


Fig. S4. Time-resolved PL spectra of pristine and 1.0 mol% C₆H₈N₂O₂ · 2HCl-doped perovskites.

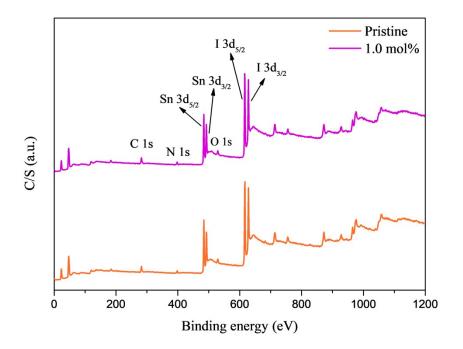


Fig. S5. XPS survey spectra obtained from control and $C_6H_8N_2O_2 \cdot 2HCl$ -doped perovskite films.

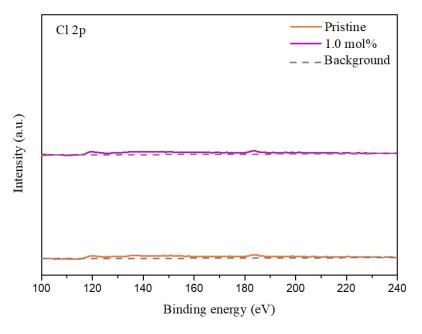


Fig. S6. The Cl 2p XPS spectra of $C_6H_8N_2O_2 \cdot 2HCl$ -doped and control $FA_{0.75}MA_{0.25}SnI_3$ films.

Table S1. Fitted photoluminescence lifetimes for pristine and 1.0 mol% $C_6H_8N_2O_2 \cdot 2HCl$ -doped $FA_{0.75}MA_{0.25}SnI_3$ perovskite films with a bi-exponential decay model. Here, A_1 and A_2 are fractional intensities, and τ_1 and τ_2 are lifetimes. The average carrier lifetime was calculated with $\tau_{avr} = A_1\tau_1 + A_2\tau_2$.

Sample	τ_1 (ns)/A ₁ (%)	τ ₂ (ns)/A ₂ (%)	χ^2	τ_{avr} (ns)
Pristine	0.75/36.32	5.59/63.68	0.934	3.83
1.0 mol% C ₆ H ₈ N ₂ O ₂ · 2HCl	0.92/32.46	8.12/67.54	1.027	5.77