Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Guanidium-Assisted Crystallization Engineering for Highly Efficient CsPbI₃ Solar Cells

Shuo Wang¹, Youkui Xu¹, Qian Wang^{1,*}, Xufeng Zhou², ZhenHua Li^{3,*}, Meng Wang¹, Yutian Lei¹, Hong Zhang⁴, Haoxu Wang⁵ and Zhiwen Jin¹

Dr. S. Wang, Dr. Y. Xu, Dr. M. Wang, Dr. Y. Lei, Prof. Q. Wang, Prof. Z. Jin ¹School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China

Dr. X. Zhou

²School of Material Science and Engineering, Liaocheng University, Liaocheng 252000, China

Prof. Z.H. Li

³School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China

Dr. H. Zhang

⁴Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China

Dr. H. Wang

⁵Delft University of Technology, Photovoltaic Materials and Devices Group, Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: qianwang@lzu.edu.cn, lizhenhua@lzu.edu.cn

Keywords: CsPbI₃, GA⁺, Hydrogen bond, Defect passivation, Doping

Experimental Section

Materials preparation

Materials preparation: lead (II) iodide (PbI2, >99.99%), cesium iodide (CsI, ≥99.99%), Guanidine Hydroiodide (GAI, >97.0%) were purchased from Xi'an Polymer Light Technology corporation. 2,2,7,7-tetrakis (N,N-dipmethoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) generously was provided by HighChem Company Limited Electronic Materials Department. 4-tertbutylpyridine (TBP), bis (trifluoromethylsulfonyl) imidelithium salt (Li-TFSI), tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt (III) tri[bis(trifluoromethane)sulfonimide] (FK209), chlorobenzene, hydriodic acid (HI), dimethyl formamide (DMF). All the reagents and chemicals were used as received without further purification.

DMAI intermediate Synthesis: Under the condition of ice bath (0 °C), DMF (25 ml) was gradually added dropwise to the HI (100 ml) solution, and stirred at 400 rpm for 6 hours. After the stirring is completed, the rotary steaming apparatus is used to collect the precipitate at a temperature of about 90 °C. Followed, it was dissolved in ethanol repeatedly and precipitated with anhydrous ether to obtain a white sample. Then heated in a vacuum oven at 50°C overnight to form DMAI powder.

Precursor solution preparation: The $GA_xCs_{1-x}PbI_3$ precursor solution was prepared by dissolving PbI₂, CsI, DMAI, GAI in DMF, and stirred it for more than 6 hours to achieve $GA_xCs_{1-x}PbI_3(x=0, 1\%, 3\%, 5\%)$ with 0.6M.

HTL solution preparation: A solution of Spiro-OMeTAD was prepared by dissolving Spiro-OMeTAD powder (72.5mg), a sulfonyl imide (Li-TFSI, 35µL, 520mg Li-TFSI in 1mL acetonitrile), a FK209 (29µL, 300 mg FK209 in 1 mL acetonitrile) and tertbutyl pyridine (tBP, 29µL) in 1mL chlorobenzene solution.

Device fabrication preparation

Device fabrication preparation: FTO-coated glass after cleaning was soaked into TiCl₄ solution for 60 minutes at 70°C. Then, a one-step program was employed to deposit the perovskite layer, spin-coating at 3000 rpm for 30 seconds. To form the $GA_xCs_{1-x}PbI_3$ layer, the substrate was annealed at 210°C for 10 minutes under a humidity environment (RH = ~ 40%). A spiro HTL layer was spin-coated on the $GA_xCs_{1-x}PbI_3$ layer at 5000rpm for the 30s. Finally, Au was thermally-evaporated on the HTL layer as top electrodes.

Computational Methods:

The Vienna Ab-initio Simulation Package (VASP) is used to implement the firstprinciples calculation with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional based on the generalized gradient approximation (GGA). The kinetic-energy cut-offs 600 eV and 3 x 3 x 3 Monkhorst-Pack k-mesh are used in structural relaxation until all the force components decrease to less than 0.04 eV/Å. The van der Waals interactions corrections is calculated by the zero damping DFT-D3 method of Grimme. The Gaussian smearing is used with the smearing parameter 0.05 for all the calculations. In the electronic self-consistent calculations, the convergence criteria were set to 1.0×10^{-6} eV with 7 x 7 x 7 k-mesh before calculations of the band structures along the along high symmetry lines.

Figure S1. (a) Schematic structure and (b) cross-sectional SEM image of the PSCs.

Figure S2. Surface XPS spectrum of I 3d, Cs 3d, Pb 4f.

Figure S3. Optical properties and charge carrier dynamics based on different molar ratio GA^+ CsPbI₃: (a-b) PL spectra; (c) Absorption image; (d) Photocurrent decay image; (e) Time-resolved PL spectra.

Figure S4. (a) J-V curves of reference device (0%) and (b) champion device (3%). (c) environment stability of the resulted devices.

Table S1. The photovoltaic parameters of the reference CsPbI₃ PSCs under reverse scan direction and forward scan direction. (Extracted from **Figure S4a**).

Scan Direction	J _{SC} (mA cm ⁻²)	V _{oc} (V)	FF (%)	PCE (%)
Reverse	20.70	1.08	80.30	18.01
Forward	20.80	1.04	78.20	16.92

Table S2. The photovoltaic parameters of the reference $CsPbI_3$ PSCs with 3% GA⁺ doping under reverse scan direction and forward scan direction. (Extracted from **Figure S4b**).

Scan	J_{SC}	V _{oc}	FF (9()	PCE
Direction	(mA cm ⁻)	(V) 1 14	(%)	(%)
Keverse	20.70	1.14	80.70	19.05
Forward	20.36	1.06	80.03	17.25