Supporting Information

Eu^{2+} doped halide perovskite KCaCl₃ with high-efficiency blue emission and the scintillation application

Kuangnan Lyu, Enhai Song and Zhiguo Xia*

The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.

Table S1 The total energy (E_0) of fifteen proposed substitution geometry models fora 2×2×2 supercell of KCaCl₃:0.13Eu²⁺ with two Ca²⁺ ions replaced by two Eu²⁺ ions.

Model	E ₀ (eV)
M1	-632.448
M2	-632.448
M3	-632.447
M4	-632.452
M5	-632.448
M6	-632.452
M7	-632.451
M8	-632.45
M9	-632.448
M10	-632.452
M11	-632.446
M12	-632.448
M13	-632.449
M14	-632.453
M15	-632.453

M2

2 2 0

M9

M6

M10

M11

M12

Figure S1. Possible substitution geometry models (denoted as M1-M15) for a $2 \times 2 \times 2$ supercell of KCaCl₃:Eu²⁺ with two Ca²⁺ replaced by two Eu²⁺.

Figure S2. Temperature dependent emission spectrum of KCaCl₃:0.13Eu²⁺ particles through heating (a) and cooling (b) processes.

Figure S3. T-cycles of KCaCl₃:0.13Eu²⁺ powders.

Figure S4. SEM image and size distribution of the $KCaCl_3:0.13Eu^{2+}$ powders (a), (b); and $KCaCl_3:0.13Eu^{2+}$ film (c), (d).