Electronic Supplementary Information

1,7/8-Substituted isoquinoline derivatives: position isomerism caused by HIO₃-induced dehydrogenation and solid-state fluorescent stimulus-responsive properties

Xiangdong Han, Xiaoqing Liu, Nannan Liu, Wenxia Gao, Yunxiang Lei,* Yunbing Zhou, Miaochang Liu, Huayue Wu* and Xiaobo Huang*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China E-mail: yunxianglei@wzu.edu.cn (Y. Lei), huayuewu@wzu.edu.cn (H. Wu), xiaobhuang@wzu.edu.cn (X. Huang)

Contents:

Scheme S1 Synthesis of various 7,8-dihydroisoquinoline derivatives.

1. Experimental

1.1 Measurements and materials

¹H and ¹³C NMR spectra were performed with a Bruker DRX 500/400 NMR spectrometer or a Bruker DRX 400 NMR spectrometer. HRMS-ESI mass spectra were performed with a Hitachi Nano Frontier LD spectrometer. Absorption spectra were performed with a UV-3600 Shimadzu spectrophotometer. Fluorescence spectra were conducted on a HITACHI F-7000 fluorometer. Fluorescence quantum yields ($\Phi_{\rm F}$) in solid state were conducted on a FluoroMax-4 (Horiba Jobin Yvon) fluorometer. Single-crystal X-ray diffraction measurements were obtained on a Bruker-Nonius Smart Apex CCD diffractometer with graphite monochromated Mo Ka radiation. 2-(2,6-Dimethyl-4H-pyran-4-ylidene)malononitrile (2) was synthesized by the reaction of 2,6-dimethyl-4H-pyran-4-one (1) and malononitrile in the presence of acetic anhydride according to the previous report (Scheme S1).^[1] 2-(2,6-di((E)-Styryl)-4H-pyran-4-ylidene)malononitrile (3a), 2-(2,6-bis((*E*)-4-cyanostyryl)-4*H*-pyran-4-ylidene)malononitrile (**3b**), 2-(2,6-bis((E)-4methoxystyryl)-4H-pyran-4-ylidene)malononitrile (3c), and 2-(2,6-bis((E)-4-(dimethylamino)styryl)-4H-pyran-4-ylidene)malononitrile (3d) were synthesized using compound 2 and the corresponding aromatic aldehydes as the materials according to the previous literature.^[2] (E)-8-Phenyl-3,6-di(pyrrolidin-1-yl)-1-styryl-7,8-dihydroisoquinoline-4-carbonitrile (FQ-Ph-2H), (E)-8-phenyl-3,6-di(piperidin-1-yl)-1-styryl-7,8-dihydroisoquinoline-4-carbonitrile (SQ-Ph-2H), (E)-8-(4-methoxyphenyl)-1-(4-methoxystyryl)-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4 carbonitrile (SQ-MO-2H), and (E)-8-(4-(dimethylamino)phenyl)-1-(4-(dimethylamino)styryl)-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4-carbonitrile (SQ-DMA-2H) were synthesized according to the previous literature,^[2] using compound 3 and as pyrrolidine/piperidine the materials.

1.2 General procedure for 7,8-dihydroisoquinoline derivatives FQ-CN-2H, FQ-MO-2H, FQ-DMA-2H, and SQ-CN-2H.

A mixture of compound 3b/3c/3d (5.0 mmol), pyrrolidine/piperidine (20.0 mmol), KH₂PO₄ (15.0 mmol), and DMSO (15.0 mL) was stirred at 120 °C for 14 h under N₂ atmosphere. After being cooled to the room temperature, the reaction mixture was poured into CH₂Cl₂ (100 mL), and the organic layer was washed with water (50 mL) for three times, and then dried over Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel to afford the corresponding product.

(*E*)-8-(4-Cyanophenyl)-1-(4-cyanostyryl)-3,6-di(pyrrolidin-1-yl)-7,8-dihydroisoquinoline-4-carbonitrile (FQ-CN-2H). Following the general procedure, using petroleum ether/ethyl acetate (4:1, v/v) as the eluent to afford a red solid (1.23 g, 46% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.70 (d, *J* = 15.5 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 7.5 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.93-6.88 (m, 3H), 5.13 (s, 1H), 4.07 (s, 1H), 3.80-3.77 (m, 5H), 3.38-3.35 (m, 2H), 3.12-3.08 (m, 1H), 2.13-2.03 (m, 9H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 163.8, 163.5, 155.8, 144.8, 141.9, 141.3, 132.4, 131.7, 131.5, 130.0, 127.6, 127.5, 121.1, 119.9, 118.8, 118.6, 111.2, 110.6, 96.0, 78.1, 49.5, 48.6, 47.2, 37.1, 25.5 ppm.

(E)-8-(4-Methoxyphenyl)-1-(4-methoxystyryl)-3,6-di(pyrrolidin-1-yl)-7,8-

dihydroisoquinoline-4-carbonitrile (FQ-MO-2H). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow solid (0.92 g, 32% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.69 (d, J = 14.5 Hz, 1H), 7.36 (d, J = 7.5 Hz, 2H), 7.07 (d, J = 6.5 Hz, 2H), 6.93 (d, J = 15.0 Hz, 1H), 6.84 (d, J = 7.5 Hz, 2H), 6.75 (d, J = 7.5 Hz, 2H), 5.46 (s, 1H), 4.42 (d, J = 6.5 Hz, 1H), 3.85 (br, 4H), 3.80 (s, 3H), 3.73 (s, 3H), 3.30 (br, 4H), 2.98-2.84 (m, 2H), 1.97-1.85 (m, 8H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 159.6, 157.9, 156.7, 152.3, 151.1, 150.9, 135.8, 134.2, 129.9, 128.5, 128.3, 1219., 120.6, 113.9, 113.7, 113.1, 90.6, 81.2, 55.2, 55.0, 48.8, 47.6, 36.4, 34.7, 25.6, 24.9 ppm.

(*E*)-8-(4-(Dimethylamino)phenyl)-1-(4-(dimethylamino)styryl)-3,6-di(pyrrolidin-1-yl)-7,8dihydroisoquinoline-4-carbonitrile (FQ-DMA-2H). Following the general procedure, using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford a yellow solid (1.51 g, 52% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.68 (d, *J* = 15.5 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 15.0 Hz, 1H), 6.64 (d, *J* = 8.5 Hz, 2H), 6.59 (d, *J* = 8.0 Hz, 2H), 5.45 (s, 1H), 4.39 (d, *J* = 7.0 Hz, 1H), 3.85 (br, 4H), 3.32 (br, 4H), 2.96 (s, 6H), 2.93-2.89 (m, 2H), 2.87 (s, 6H), 1.96-1.85 (m, 8H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 156.7, 152.2, 151.3, 150.3, 149.0, 134.8, 131.9, 130.4, 128.5, 128.0, 125.6, 120.9, 119.8, 113.3, 112.6, 112.0, 90.7, 80.9, 48.9, 47.6, 40.62, 40.58, 40.32, 40.28, 36.3, 34.7, 25.7, 25.0 ppm.

(*E*)-8-(4-Cyanophenyl)-1-(4-cyanostyryl)-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4carbonitrile (SQ-CN-2H). Following the general procedure, using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford a yellow solid (2.28 g, 80% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.74 (d, *J* = 15.0 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.56 (d, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 7.5 Hz, 2H), 6.95 (d, *J* = 8.5 Hz, 3H), 5.37 (s, 1H), 4.11 (s, 1H), 3.57 (br, 4H), 3.56 (br, 5H), 3.01-2.98 (m, 1H), 1.73-1.66 (m, 12H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 165.9, 165.2, 160.6, 144.6, 141.4, 141.0, 132.3, 132.1, 131.3, 130.2, 127.5, 127.1, 123.7, 118.8, 118.6, 118.5, 111.2, 110.5, 97.90, 97.86, 82.8, 49.8, 45.6, 38.1, 29.6, 25.8, 25.5, 24.6, 23.9 ppm.

1.3 General procedure for the target isoquinoline derivatives

A mixture of various 7,8-dihydroisoquinoline derivatives (1.0 mmol), hydroiodic acid (1.2 mmol), acetonitrile (10.0 mL) was stirred at 80 °C for 45 min. After being cooled to the room temperature, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel to afford the corresponding product.

(*E*)-8-Phenyl-3,6-di(pyrrolidin-1-yl)-1-styrylisoquinoline-4-carbonitrile (FQ-Ph-8). Following the general procedure, using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford a yellow solid (409.5 mg, 84% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.54 (d, *J* = 15.5 Hz, 1H), 7.45-7.37 (m, 5H), 7.19-7.18 (m, 3H), 6.93-6.91 (m, 2H), 6.79 (d, *J* = 2.0 Hz, 1H), 6.67 (d, *J* = 15.0 Hz, 1H), 6.62 (d, *J* = 2.0 Hz, 1H), 3.94 (br, 4H), 3.50 (t, *J* = 6.5 Hz, 4H), 2.08-2.04 (m, 8H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 155.3, 154.6, 148.5, 144.2, 143.7, 142.9, 136.5, 133.9, 129.2, 128.5, 128.2, 127.4, 127.3, 120.7, 116.3, 112.6, 98.9, 76.2, 48.9, 47.6, 25.5, 25.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₁N₄, 471.2543; found, 471.2537.

(*E*)-8-(4-Cyanophenyl)-1-(4-cyanostyryl)-3,6-di(pyrrolidin-1-yl)isoquinoline-4-carbonitrile (FQ-CN-8). Following the general procedure, using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford a red solid (200.1 mg, 37% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 6.5 Hz, 4H), 7.48 (d, *J* = 14.5 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.81 (d, *J* = 2.0 Hz, 1H), 6.56 (d, *J* = 2.0 Hz, 1H), 6.52 (d, *J* = 15.0 Hz, 1H), 3.94 (br, 4H), 3.49 (t, *J* = 6.0 Hz, 4H), 2.10-2.04 (m, 8H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 155.0, 154.3, 148.5, 144.5, 140.7, 140.5, 132.4, 132.3, 132.2, 131.6, 130.1, 127.3, 120.3, 118.7, 118.4, 116.5, 116.4, 112.3, 111.7, 111.4, 99.6, 49.1, 47.8, 25.6, 25.5 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₂₉N₆, 521.2448; found, 521.2452.

(*E*)-8-(4-Methoxyphenyl)-1-(4-methoxystyryl)-3,6-di(pyrrolidin-1-yl)isoquinoline-4carbonitrile (FQ-MO-8). Following the general procedure, using petroleum ether/ethyl acetate (15:1, v/v) as the eluent to afford a yellow solid (182.2 mg, 33% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.92 (d, *J* = 15.5 Hz, 1H), 7.82 (s, 1H), 7.62 (d, *J* = 15.0 Hz, 1H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.02 (s, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 7.5 Hz, 2H), 3.99 (br, 4H), 3.88 (s, 3H), 3.84 (s, 3H), 3.09 (br, 4H), 2.04 (br, 4H), 1.81 (br, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 160.2, 158.5, 155.3, 155.1, 151.0, 141.4, 137.0, 134.9, 130.2, 129.4, 129.1, 128.7, 120.8, 119.9, 114.1, 113.8, 113.5, 102.9, 76.2, 55.3, 55.2, 51.1, 49.0, 25.58, 25.56 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₅N₄O₂, 531.2755; found, 531.2749.

(*E*)-7-(4-(Dimethylamino)phenyl)-1-(4-(dimethylamino)styryl)-3,6-di(pyrrolidin-1yl)isoquinoline-4-carbonitrile (FQ-DMA-7). Following the general procedure, using petroleum ether/ethyl acetate (15:1, v/v) as the eluent to afford an orange solid (333.3 mg, 56% yield). ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, *J* = 15.2 Hz, 1H), 7.85 (s, 1H), 7.58-7.52 (m, 3H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.26 (s, 1H), 7.02 (s, 1H), 6.83 (br, 1H), 6.71 (d, *J* = 8.8 Hz, 2H), 3.98 (t, *J* = 5.6 Hz, 4H), 3.12 (t, *J* = 5.2 Hz, 4H), 3.03 (s, 6H), 3.02 (s, 6H), 2.03 (t, *J* = 6.8 Hz, 4H), 1.81 (t, *J* = 7.6 Hz, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 155.6, 155.5, 151.1, 150.7, 149.2, 141.2, 137.6, 130.7, 129.8, 129.1, 129.0, 124.8, 121.1, 117.5, 113.9, 112.0, 111.9, 102.8, 75.6, 51.1, 48.9, 40.6, 40.5, 40.19, 40.15, 25.59, 25.56 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₄₁N₆, 557.3387; found, 557.3380.

(*E*)-8-Phenyl-3,6-di(piperidin-1-yl)-1-styrylisoquinoline-4-carbonitrile (SQ-Ph-8). Following the general procedure, using petroleum ether/ethyl acetate (15:1, v/v) as the eluent to afford a yellow solid (222.2 mg, 40% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.59 (d, *J* = 15.0 Hz, 1H), 7.44-7.41 (m, 5H), 7.20-7.16 (m, 4H), 6.96-6.92 (m, 3H), 6.64 (d, *J* = 15.5 Hz, 1H), 3.90 (br, 4H), 3.47 (br, 4H), 1.79-1.69 (m, 12H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 158.6, 155.0, 151.8, 144.3, 143.5, 142.4, 136.6, 134.0, 129.2, 128.6, 128.2, 128.1, 127.5, 127.3, 119.7, 118.7, 114.5, 102.3, 80.1, 49.3, 48.6, 26.2, 25.4, 24.8, 24.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₅N₄, 499.2856; found, 499.2850. (E)-8-(4-Cyanophenyl)-1-(4-cyanostyryl)-3,6-di(piperidin-1-yl)isoquinoline-4-carbonitrile

(SQ-CN-8). Following the general procedure, using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford a yellow solid (171.1 mg, 31% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.72 (d, J = 8.0 Hz, 2H), 7.56-7.48 (m, 5H), 7.17 (s, 1H), 6.96 (d, J = 8.0 Hz, 3H), 6.51 (d, J = 15.5 Hz, 1H), 3.89 (br, 4H), 3.48 (br, 4H), 1.76-1.70 (m, 12H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 158.5, 153.5, 151.8, 148.1, 144.7, 140.6, 140.1, 132.4, 132.3, 131.2, 130.1, 129.4, 119.3, 119.0, 118.6, 118.3, 114.0, 111.8, 111.5, 103.0, 100.0, 80.4, 49.3, 48.7, 29.7, 26.2, 25.5, 24.8, 24.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₃₃N₆, 549.2761; found, 549.2758.

(E)-7-(4-Methoxyphenyl)-1-(4-methoxystyryl)-3,6-di(piperidin-1-yl)isoquinoline-4-

carbonitrile (SQ-MO-7). Following the general procedure, using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford a yellow solid (329.2 mg, 59% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, J = 15.0 Hz, 1H), 7.89 (s, 1H), 7.68-7.60 (m, 5H), 7.30 (s, 1H), 7.00 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 7.5 Hz, 2H), 3.88 (s, 6H), 3.85 (br, 4H), 2.96 (br, 4H), 1.79-1.74 (m, 6H), 1.50 (br, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 160.5, 159.0, 158.8, 155.7, 115.2, 141.3, 137.7, 133.4, 133.2, 129.5, 129.3, 127.8, 119.7, 119.2, 116.9, 114.2, 113.9, 109.3, 81.8, 55.3, 52.0, 49.8, 26.2, 25.6, 24.8, 24.0 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₃₉N₄O₂, 559.3068; found, 559.3062.

(*E*)-7-(4-(Dimethylamino)phenyl)-1-(4-(dimethylamino)styryl)-3,6-di(piperidin-1yl)isoquinoline-4-carbonitrile (FQ-DMA-7). Following the general procedure, using petroleum ether/ethyl acetate (15:1, v/v) as the eluent to afford an orange solid (316.5 mg, 54% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, *J* = 15.0 Hz, 1H), 7.91 (s, 1H), 7.63-7.54 (m, 5H), 7.29 (s, 1H), 6.85 (br, 2H), 6.71 (d, *J* = 7.5 Hz, 2H), 3.85 (br, 4H), 3.03 (s, 12H), 2.97 (br, 4H), 1.79-1.73 (m, 6H), 1.52 (br, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 159.3, 155.7, 155.6, 150.8, 149.5, 140.7, 138.3, 133.4, 129.2, 129.0, 127.5, 124.6, 119.5, 117.2, 116.9, 112.4, 111.9, 109.1, 81.3, 51.9, 49.8, 40.58, 40.56, 40.18, 40.16, 26.3, 25.7, 24.8, 24.1 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₈H₄₅N₆, 585.3700; found, 585.3695.

References

- H. Li, Y. Guo, G. Li, H. Xiao, Y. Lei, X. Huang, J. Chen, H. Wu, J. Ding and Y. Cheng, J. Phys. Chem. C, 2015, 119, 6737–6748.
- X. Zhang, D. Wang, H. Shen, S. Wang, Y. Zhou, Y. Lei, W. Gao, M. Liu, X. Huang and H. Wu, Org. Chem. Front., 2021, 8, 856–867.

2. Schemes, figures, and tables

Fig. S1 Crystal structure of **FQ-DMA-2H**. Single crystal of **FQ-DMA-2H** is obtained from a slow diffusion of a petroleum ether/CHCl₃ mixture (1:2, v:v).

Fig. S2 Fluorescence spectra of the original samples of pyrrolidin-1-yl-substituted isoquinolines before and after grinding.

Compound	Туре	$\lambda_{ m em}$	$arPhi_{ m F}$
		(nm)	(%)
FQ-PH-8	Original	563	7.3
	Ground	564	5.4
	Acid-fumed	618	0.5
FQ-CN-8	Original	601	0.7
	Ground	597	0.5
	Acid-fumed	630	0.2
FQ-MO-8	Original	574	4.7
	Ground	574	1.3
	Acid-fumed	627	0.3
FQ-DMA-7	Original	597	1.5
	Ground	594	0.6
	Acid-fumed	534	0.2
SQ-PH-8	Original	582	6.1
	Ground	576	4.0
	Acid-fumed	629	0.6
SQ-CN-8	Original	587	14.1
	Ground	583	3.5
	Acid-fumed	535	0.05
SQ-MO-7	Original	587	23.2
	Ground	579	5.4
	Acid-fumed	650	3.3
SQ-DMA-7	Original	612	3.7
	Ground	602	1.3
	Acid-fumed	594	0.4

Table S1 Emission wavelengths and quantum efficiencies of the target compounds under different conditions.

Fig. S3 XRD curves of pyrrolidin-1-yl-substituted isoquinolines before and after grinding.

Table S2 Crystal	data and	details of	f collection	and refin	nement fo	or the p	yrrolidin-1	-yl-substitt	ıted
compounds.									

	FQ-DMA-2H	FQ-PH-8	FQ-CN-8	FQ-MO-8	FQ-MO-7	FQ-DMA-7
CCDC (no.)	2161234	2161235	2161236	2161238	2161237	2161239
Empirical formula	$C_{36}H_{42}N_6$	$C_{32}H_{30}N_4$	$C_{34}H_{28}N_6$	$C_{34}H_{34}N_4O_2$	$C_{34}H_{34}N_4O_2$	$C_{36}H_{40}N_{6}$
Formula weight	558.75	470.60	520.62	530.65	530.65	556.74
Temperature (K)	293.01	293(2)	293(2)	293(2)	213(2)	293(2)
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	P 1 2(1)/n1	P 2(1)/n	$P\overline{1}$	Pī	Pī	<i>P</i> 2(1)/c
Ζ	4	4	4	2	2	4
$D_{ m calcd} [m Mg/m^3]$	1.059	1.211	1.279	1.264	1.231	1.086
F (000)	1200	1000	1096	564	564	1192
θ range [°]	2.423-25.499	2.074-24.994	2.079-26.000	2.294-25.499	2.432-25.499	2.459-24.999
$R_1[I \ge 2\sigma(I)]$	0.0673	0.0808	0.0552	0.0511	0.0521	0.0914
$wR_2 [I \ge 2\sigma(I)]$	0.1733	0.1833	0.1274	0.1101	0.1119	0.2639
<i>a</i> [Å]	13.3509(10)	6.3523(18)	8.6436(4)	9.4015(4)	8.4322(15)	17.1607(13)
<i>b</i> [Å]	10.8299(8)	19.643(6)	13.9559(6)	11.3355(5)	12.189(2)	8.3021(7)
<i>c</i> [Å]	24.274(2)	20.707(8)	23.8230(10)	13.9846(5)	14.487(3)	24.754(2)
α [deg]	90	90	100.8030(10)	82.1270(10)	104.542(6)	90
β [deg]	93.508(2)	92.809(10)	93.3960(10)	70.8020(10)	96.455(7)	105.113(2)
γ [deg]	90	90	105.4040(10)	87.3020(10)	90.161(6)	90
$V[\text{\AA}^3]$	3503.2(5)	2580.7(14)	2703.3(2)	1394.20(10)	1431.4(5)	3404.8(5)

GOF 1.0	063 1.034	1.004	1.036	1.048	0.926	
<i>R</i> (int) 0.0	0940 0.0912	0.0570	0.0507	0.0400	0.0608	
No. of reflens collected 35	5897 11437	54303	33329	17362	27781	
No. of unique reflens 65	i 4529	10617	5181	5309	5977	
R_1 (all data) 0.1	0.1867	0.0999	0.0810	0.0827	0.1994	
wR_2 (all data) 0.2	0.2429	0.1576	0.1287	0.1318	0.3211	

Table S3 Crystal data and details of collection and refinement for the piperidin-1-yl-substituted compounds.

	SQ-PH-8	SQ-CN-8	SQ-MO-7	SQ-DMA-7
CCDC (no.)	2161240	2161241	2161242	2161243
Empirical formula	$C_{34}H_{34}N_4$	$C_{36}H_{32}N_{6}$	$C_{36}H_{38}N_4O_2$	$C_{38}H_{44}N_6$
Formula weight	498.65	548.67	558.70	584.79
Temperature (K)	293(2)	293(2)	293.15	293(2)
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	Pī
Ζ	2	2	2	2
D _{calcd} [Mg/m ³]	1.198	1.229	1.117	1.159
F (000)	532	580	596	628
θ range [°]	2.533-25.499	2.632-25.500	2.458-25.499	2.129-24.999
$R_1[I>2\sigma(I)]$	0.0499	0.0657	0.0679	0.0734
wR_2 [I>2 σ (I)]	0.1210	0.1427	0.1751	0.1441
a [Å]	10.1544(7)	8.7218(11)	10.0144(19)	11.5660(18)
<i>b</i> [Å]	11.9375(9)	12.9533(15)	13.195(3)	11.9295(19)
<i>c</i> [Å]	13.0772(10)	14.4264(17)	13.519(3)	13.2606(19)
α [deg]	71.511(2)	69.115(3)	109.990(6)	71.789(5)
β [deg]	70.377(2)	79.040(3)	92.980(6)	75.051(4)
γ [deg]	72.567(2)	79.308(3)	96.345(6)	88.530(5)
$V[\text{\AA}^3]$	1382.59(18)	1482.6(3)	1660.7(6)	1676.2(4)
GOF	1.031	1.048	1.098	1.013
R(int)	0.0396	0.0845	0.0701	0.1173
No. of reflens collected	33681	34528	31358	30313
No. of unique reflens	5117	5518	6166	5900
R_1 (all data)	0.0686	0.1443	0.1191	0.1972
wR_2 (all data)	0.1376	0.1850	0.2100	0.2044

Fig. S4 Stacking arrangements (a) and intramolecular interactions (b) of single crystal SQ-PH-8.

Fig. S5 Stacking arrangements (a) and intramolecular interactions (b) of single crystal SQ-CN-8.

Fig. S6 Stacking arrangements (a) and intramolecular interactions (b) of single crystal FQ-PH-8.

Fig. S7 Stacking arrangements (a) and intramolecular interactions (b) of single crystal FQ-CN-8.

Fig. S8 Stacking arrangements (a) and intramolecular interactions (b) of single crystal FQ-MO-8.

Fig. S9 Stacking arrangements (a) and intramolecular interactions (b) of single crystal FQ-DMA-7.

Fig. S10 Solid-state absorption spectra of the original samples of FQ-PH-8 (a), FQ-CN-8 (b), FQ-MO-8 (c), FQ-DMA-7 (d), SQ-PH-8 (e), SQ-CN-8 (f), SQ-MO-7 (g), and SQ-DMA-7 (h) before and after grinding.

Fig. S11 Emission spectra of the original samples of pyrrolidin-1-yl-substituted isoquinolines upon TFA (g) and then EDA (l)/(g). Inset: fluorescence color pictures under different conditions.

Fig. S12 Absorption spectra of SQ-MO-7 (a) and SQ-DMA-7 (b) in CHCl₃ solvent at 1×10^{-5} mol/L with the gradual addition of TFA.

Fig. S13 Titration experiment of ¹H NMR spectra of SQ-MO-7 in CDCl₃ with the gradual addition of TFA.

4. NMR spectra

Fig. S19¹³C NMR of FQ-DMA-2H (CDCl₃, 125 MHz).

Fig. S23 ¹³C NMR of FQ-PH-8 (CDCl₃, 125 MHz).

Fig. S25 ¹³C NMR of FQ-CN-8 (CDCl₃, 125 MHz).

Fig. S27 ¹³C NMR of FQ-MO-8 (CDCl₃, 125 MHz).

160

150

140

Fig. S29 ¹³C NMR of FQ-DMA-7 (CDCl₃, 125 MHz).

-500 --0 --500

0

20

10

Fig. S31 ¹³C NMR of SQ-PH-8 (CDCl₃, 125 MHz).

Fig. S33 ¹³C NMR of SQ-CN-8 (CDCl₃, 125 MHz).

160

Fig. S35 ¹³C NMR of SQ-MO-7 (CDCl₃, 125 MHz).

-400 -200 ---0 ---200

0

10

20

Fig. S37 ¹³C NMR of SQ-DMA-7 (CDCl₃, 125 MHz).