Electronic Supplementary Information for

Design of potential singlet fission chromophores based on diketofurofuran: an alternative to diketopyrrolopyrrole

Li Shen, ^a Qian Wu, ^a Jitao Lu, ^a Haitao Zhao, ^b Heyuan Liu, ^c Qingguo Meng, ^{a,*} Xiyou Li^{d,*}

^aCollege of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
^bShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
^cCollege of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
^dSchool of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China

To whom correspondence should be addressed: <u>mengqg@wfu.edu.cn</u>, <u>xiyouli@upc.edu.cn</u>

Contents

- Comparisons of the excitation energies calculated with different functionals in toluene (Fig. S1, Table S1-2).
- Solvation effects and basis set effect on *E*(S₁) and *E*(T₁) of DFF derivatives (Fig. S1, Table S3-4)
- 3. Effect of electronic coupling in 1B-DFF dimers on $E(S_1)v$ and $E(T_1)v$ (Fig. S1, Table S5)
- Bond lengths (Å) and torsion Angles (deg) of along the conjugated backbones of αMe₂N-1F-DFF and αMeO-1F-DFF (Fig. S1, Table S6).
- 5. Comparisons of the calculated results for F3B-DFF, Pa-DFF and 3B-DFF (Table S7)
- 6. Hammett constant (σ_p) of the introduced terminal substituents (Table S8)
- 7. $E(S_1)_v$, $E(S_1)$ and $E(T_1)$ as a function of HLG in DFF derivatives with different aromatic substituents in toluene (Fig. S2).
- Diradical character y₀ as a function of HLG in DFF derivatives with different aromatic substituents (Fig. S3).
- 9. Energy differences between 1F-DFF derivatives and the pristine 1F-DFF in $E(S_1)$, $2E(T_1)$ and $E(T_2)$ with respect to the Hammett constant (σ_p) of the attached terminal substituents in toluene (Fig. S4).
- 10. HOMO and LUMO energies for α and β -substitutions in 1F-DFF derivatives with respect to the Hammett constant (σ_p) of the attached terminal substituents (Fig. S5).
- Electron density distributions of HOMO and LUMO in αNO₂-1F-DFF, αMeO-1F-DFF, βNO₂-1F-DFF and βMeO-1F-DFF (Fig. S6).
- HOMO, LUMO energy levels and HOMO-LUMO gap (HLG) values (in eV), diradical character y₀ and tetraradical character y₁ (Table S9).
- 13. Vertical excitation energies $(E(S_1)_v \text{ and } E(T_2)_v)$, adiabatic excitation energies $(E(S_1), E(T_1) \text{ and } E(T_2))$ and the corresponding $\Delta E_{SF(v)}, \Delta E_{SF}, \Delta E_{TTA(v)}, \Delta E_{TTA}$ in toluene (Table S10).
- 14. Coordinates of the four dimers.

Because of the donor-acceptor-donor structures for all the compounds, different functionals were used to evaluate the effect of charge-transfer character on SF relevant excited states. These functionals include B3LYP, CAM-B3LYP, ω B97XD, M06-2X and tuned LC-BLYP. The solvation effects were evaluated by polarizable continuum model (PCM) with toluene and chloroform used as solvents. Compared to available experimental results, the functional CAM-B3LYP, ω B97XD, M06-2X and tuned LC-BLYP overestimate $E(S_1)_v$ and give larger $E(S_1)$ simultaneously (Table S1). The range separating parameters μ were tuned for DFF derivatives (Table S2) with Quantum program optDFTw.^a The functional CAM-B3LYP and ω B97XD show similar results and larger $E(T_1)$ than the functional B3LYP. The calculated $E(S_1)_v$ with functional B3LYP are more close to the experimental values for both *IB*-DFF and **Br-1F-DFF**.^b Moreover, the basis set was extended to larger basis set, including 6-311G** and cc-pVTZ. The calculated results show that solvation effects affect the SF relevant excited state energies (Table S3), while the excitation energies are insensitive to the extension of basis set (Table S4).

Singlet fission is an intrinsically multi-molecular process, and electronic coupling among adjacent molecules may affect the SF relevant excited energies. We took four dimers in which the two monomer units show different distances and relative orientations in 1B-DFF crystal. We calculated $E(S_1)_v$ and $E(T_1)_v$ for these dimers at the theoretical level of ω B97xd/6-311G* based on the original geometries without optimizations. Due to electronic coupling, S₁ state in the monomer splits into a higher and a lower excited states in dimers. Compared to 1B-DFF monomer, the energy shift caused by molecular interactions is rather small (Table S5). The maximum energy shifts are ~0.09 eV for $E(S_1)_v$ and ~ 0.03 eV for $E(T_1)v$. Likewise, in a covalent TDPP dimer with H-aggregate character, the energy difference of S₁ state between monomer and dimer is only 0.03 eV.^c It is reasonable that molecular interactions make negligible effect on SF relevant excited energies in DFF dimers. In addition, the functional ω B97XD was also used to obtain the relaxed geometries of S₁, T₁ and T₂ states of α MeO-1F-DFF and α Me₂N-1F-DFF in toluene. Changing from B3LYP to ω B97XD, there exists negligible variations in bond length (< 0.007 Å) and dihedral angles (< 0.3°) (Fig. 1S, Table S6). As a result, it is reasonable to evaluate SF feasibility of DFF derivatives at the theoretical level of B3LYP/6-311G*.

1B-DFF

Br-1B-DFF

1T-DFF

Fig. S1 Molecular structures of the involved molecules for test.

		B3LYP	Cam-	M06-2X	ωB97XD	Tuned-LC-	Exp^b
			B3LYP			BLYP ¹	
1B-DFF	$E(S_1)_v$	2.720	3.051	3.055	3.062	2.849	2.725
	$E(S_1)$	2.548	2.804	2.808	2.815		
	E(T ₁)	1.385	1.419	1.599	1.457		
	$E(T_2)_v$	2.739	2.808	3.115	2.902		
	$E(T_2)$	2.529	2.600	2.862	2.692		
Br-1B-	$E(S_1)_v$	2.610	2.888	2.968	2.994	2.743	2.638
DFF	$E(S_1)$	2.447	2.726	2.722	2.743		
	$E(T_1)$	1.355	1.394	1.572	1.433		
	$E(T_2)_v$	2.674	2.647	3.055	2.845		
	$E(T_2)$	2.481	2.554	2.819	2.643		
1F-DFF	$E(S_1)_v$	2.565	2.853	2.848	2.858	2.706	
	$E(S_1)$	2.435	2.650	2.652	2.658		
	$E(T_1)$	1.210	1.234	1.417	1.279		
	$E(T_2)_v$	2.476	2.545	2.816	2.615		
	$E(T_2)$	2.284	2.327	2.593	2.405		
1T-DFF	$E(S_1)_v$	2.519	2.836	2.833	2.850	2.656	
	$E(S_1)$	2.370	2.612	2.616	2.629		
	$E(T_1)$	1.216	1.252	1.443	1.301		
	$E(T_2)_v$	2.392	2.476	2.782	2.558		
	$E(T_2)$	2.191	2.248	2.549	2.342		
2T-DFF	$E(S_1)_v$	2.027	2.466	2.432	2.529	2.187	
	$E(S_1)$	1.880	2.209	2.195	2.266		
	$E(T_1)$	1.000	1.092	1.262	1.162		
	$E(T_2)_v$	1.906	2.067	2.347	2.184		
	$E(T_2)$	1.706	1.731	2.086	1.838		

Table S1 Vertical and adiabatic excitation energies with different functionals in toluene.

¹Calcualted $E(S_1)_v$ based on the optimized S_0 geometries at the theoretical level of B3LYP/6-311G*

Table S2 Tuned range separating parameters μ [bohr⁻¹] in LC-BLYP/6-31G* for DPP derivatives with Quantum program optDFTw.

	1B-DFF	Br-1B-DFF	1F-DFF	1T-DFF	2T - DFF
μ	0.2160	0.2012	0.2324	0.2181	0.1754

Table S3 Solvation effects on $E(S_1)$ and $E(T_1)$ of DFF derivatives (in eV).

	vacuum	toluene	CHCl ₃
1F-DFF	2.618/1.211	2.435/1.210	2.341/1.209
2F-DFF	2.181/1.029	1.967/1.023	1.862 /1.018
3F-DFF	1.929/0.970	1.725/0.961	1.626/0.953

Table S4 Basis set effects on $E(S_1)$ and $E(T_1)$ of DFF derivatives in toluene (in eV).

	6-311G*	6-311G**	cc-pVTZ
1F-DFF	2.435/1.210	2.433/1.210	2.414/1.200
2F-DFF	1.967/1.023	1.967/1.024	1.949/1.012
3F-DFF	1.725/0.961	1.725/0.961	1.709/0.948

Table S5. Effect of electronic coupling in *IB*-DFF dimers on $E(S_1)_v$ and $E(T_1)_v$ in vacuum (oscillator strengths are listed in parentheses) (in eV).

	Monomer	Dimer1	Dimer2	Dimer3	Dimer4
\mathbf{S}_1	3.208(0.750)	3.160(1.477)	3.117(0.000)	3.171(1.635)	3.192(1.455)
S_2	4.388(0.001)	3.218(0.071)	3.227(1.298)	3.237(0.000)	3.207(0.083)
S_3	4.473(0.000)	4.263(0.003)	4.059(0.030)	4.382(0.001)	4.432(0.000)
S_4	4.677(0.000)	4.318(0.003)	4.060(0.000)	4.382(0.000)	4.434(0.001)
T_1	1.284	1.294	1.258	1.282	1.296
T ₂	2.895	1.300	1.263	1.282	1.300
T ₃	3.745	2.893	2.883	2.895	2.889
T_4	3.891	2.896	2.890	2.895	2.893

			aMe ₂ N-	-1F-DFF			aMeO-1	F-DFF	
		d_1	d_2	Φ_1	Φ_2	d_1	d_2	Φ_1	Φ_2
	\mathbf{S}_0	1.405	1.353	-0.582	-9.176	1.412	1.321	0	0
D2LVD	\mathbf{S}_1	1.392	1.351	-0.193	-7.524	1.393	1.318	0	0
BSLIP	T_1	1.384	1.352	-0.316	-7.959	1.386	1.320	0	0
	T_2	1.378	1.347	-0.126	-7.208	1.381	1.317	0	0
	S_0	1.409	1.352	-0.535	-9.298	1.416	1.316	0	0
oD07VD	\mathbf{S}_1	1.388	1.345	0.090	-7.366	1.390	1.311	0	0
WB9/AD	T_1	1.379	1.350	-0.249	-8.019	1.383	1.315	0	0
	T_2	1.383	1.344	0.131	-7.109	1.385	1.311	0	0

Table S6 Bond lengths (Å) and torsion Angles (deg) of along the conjugated backbones of αMe_2N -*I*F-DFF and $\alpha MeO-1F$ -DFF.

Table S7 Comparisons of the calculated results for F3B-DFF, Pa-DFF and 3B-DFF.¹

	НОМО	LUMO	HLG	y ₀	y1	$E(\mathbf{S}_1)$	$E(T_1)$	$E(T_2)$
F3B-DFF	-5.606	-3.249	2.356	0.273	0.141	2.018	1.194	1.520
Pa-DFF	-5.893	-3.183	2.710	0.193	0.056	2.290	1.347	2.322
3B-DFF	-5.822	-3.175	2.647	0.186	0.044	2.191	1.319	2.276

¹Energies are evaluated in toluene (in eV).

Table S8 Hammett constant (σ_p) of the introduced terminal substituents.^d

	-F	-Cl	-Br	-COOMe	-COOH	-CF ₃	-CHO
σ_p	0.06	0.23	0.23	0.45	0.45	0.54	0.42
	-CN	-NO ₂	-Me	-OH	-OMe	-NH ₂	-NMe ₂
σ_{p}	0.66	0.78	-0.17	-0.37	-0.27	-0.66	-0.83

Fig. S2 $E(S_1)_v$, $E(S_1)$ and $E(T_1)$ as a function of HLG in DFF derivatives with different aromatic substituents in toluene.

Fig. S3 Diradical character y_0 as a function of HLG in DFF derivatives with different aromatic substituents.

Fig. S4 Energy differences between 1F-DFF derivatives and the pristine 1F-DFF in $E(S_1)$, $2E(T_1)$ and $E(T_2)$ with respect to the Hammett constant (σ_p) of the attached terminal substituents in toluene.

Fig. S5 HOMO and LUMO energies for α - and β -substitutions in 1F-DFF derivatives with respect to the Hammett constant (σ_p) of the attached terminal substituents in toluene.

Fig. S6 Electron density distributions of HOMO and LUMO in αNO_2 -1F-DFF, αMeO -1F-DFF, βNO_2 -1F-DFF and βMeO -1F-DFF.

Compound	НОМО	LUMO	HLG	y 0	y ₁	y_1/y_0
1B-DFF	-6.087	-3.157	2.929	0.148	0.015	0.101
2B-DFF	-5.886	-3.167	2.720	0.179	0.031	0.172
F2B-DFF	-5.920	-3.189	2.730	0.193	0.052	0.271
3B-DFF	-5.822	-3.175	2.647	0.186	0.044	0.237
F3B-DFF	-5.605	-3.249	2.356	0.273	0.141	0.515
1T-DFF	-5.848	-3.166	2.682	0.189	0.020	0.104
2T-DFF	-5.466	-3.234	2.232	0.296	0.063	0.214
F2T-DFF	-5.634	-3.216	2.418	0.244	0.035	0.143
3T-DFF	-5.293	-3.266	2.027	0.350	0.114	0.326
F3T-DFF	-5.492	-3.238	2.254	0.281	0.052	0.186
1F-DFF	-5.792	-3.101	2.691	0.180	0.015	0.086
2F-DFF	-5.342	-3.106	2.236	0.278	0.050	0.179
F2F-DFF	-5.501	-3.142	2.359	0.257	0.032	0.125
3F-DFF	-5.141	-3.115	2.026	0.326	0.093	0.285
F3F-DFF	-5.307	-3.141	2.167	0.305	0.050	0.163
1F-DPP	-5.188	-2.679	2.509	0.208	0.014	0.068
1F-DTT	-5.819	-3.179	2.640	0.206	0.018	0.088
1F-DSS	-5.798	-3.083	2.715	0.194	0.019	0.097

Table S9 HOMOLUMO energy levels and HOMO-LUMO gap (HLG) values in toluene (in eV),diradical character y_0 and tetraradical character y_1 .

Substitue	ents	НОМО	LUMO	HLG	y 0	y 1	y_1/y_0
NMo	α	-4.683	-2.366	2.317	0.137	0.009	0.062
-1N1VIC ₂	β	-5.385	-2.946	2.412	0.196	0.018	0.091
NILL	α	-4.882	-2.467	2.415	0.146	0.010	0.066
-INIT ₂	β	-5.462	-2.970	2.492	0.201	0.019	0.093
OMa	α	-5.258	-2.733	2.525	0.151	0.010	0.068
-Ome	β	-5.704	-3.087	2.617	0.187	0.016	0.086
OU	α	-5.314	-2.764	2.550	0.153	0.010	0.069
-0H	β	-5.715	-3.108	2.607	0.193	0.017	0.089
Ма	α	-5.558	-2.946	2.612	0.180	0.015	0.084
-wie	β	-5.700	-3.039	2.661	0.182	0.016	0.085
Г	α	-5.815	-3.158	2.656	0.167	0.013	0.076
-Г	β	-6.020	-3.359	2.660	0.193	0.017	0.090
Cl	α	-5.876	-3.262	2.614	0.189	0.017	0.088
-CI	β	-6.061	-3.380	2.681	0.187	0.017	0.089
D.	α	-5.853	-3.253	2.600	0.191	0.017	0.089
-Br	β	-6.037	-3.357	2.680	0.186	0.016	0.088
COOMa	α	-6.118	-3.558	2.559	0.209	0.021	0.100
-COOMe	β	-6.060	-3.330	2.730	0.168	0.013	0.079
COOU	α	-6.205	-3.643	2.562	0.211	0.021	0.101
-COOH	β	-6.117	-3.380	2.737	0.167	0.013	0.079
CE	α	-6.293	-3.604	2.688	0.194	0.018	0.091
-CF3	β	-6.259	-3.514	2.746	0.172	0.014	0.079
CUO	α	-6.309	-3.832	2.476	0.243	0.033	0.134
-СПО	β	-6.195	-3.468	2.728	0.180	0.017	0.095
CNI	α	-6.276	-3.876	2.400	0.236	0.030	0.126
-UN	β	-6.403	-3.656	2.747	0.182	0.017	0.092
NO	α	-6.648	-4.203	2.445	0.237	0.079	0.333
-1NO ₂	β	-6.507	-3.752	2.755	0.175	0.058	0.333

(1) (277	1	0	51(0))	51, 1				
	$E(\mathbf{S}_1)\mathbf{v}$	$\overline{E(\mathbf{S}_1)}$	$E(T_2)v$	$E(T_2)$	$E(\mathbf{T}_1)$	$\Delta E_{\rm SF(v)}$	$\Delta E_{\rm SF}$	$\Delta E_{\mathrm{TTA(v)}}$	$\Delta E_{\mathrm{TTA.}}$
/B-DFF	2.720	2.548	2.739	2.529	1.385	-0.050	-0.223	-0.031	-0.241
2B-DFF	2.457	2.291	2.542	2.368	1.330	-0.203	-0.369	-0.117	-0.292
F2B-DFF	2.507	2.369	2.306	2.190	1.337	-0.168	-0.305	-0.368	-0.484
3B-DFF	2.357	2.191	2.445	2.276	1.319	-0.280	-0.446	-0.192	-0.362
F3B-DFF	2.098	2.018	1.633	1.520	1.194	-0.290	-0.369	-0.755	-0.867
/T-DFF	2.519	2.370	2.392	2.191	1.216	0.087	-0.062	-0.040	-0.241
2T-DFF	2.027	1.880	1.906	1.706	1.000	0.026	-0.120	-0.095	-0.294
F2T-DFF	2.229	2.103	2.150	1.994	1.109	0.011	-0.115	-0.068	-0.225
3T-DFF	1.785	1.648	1.650	1.452	0.937	-0.090	-0.227	-0.225	-0.423
F <i>3</i> T-DFF	2.045	1.931	2.005	1.868	1.057	-0.068	-0.182	-0.108	-0.245
/F-DFF	2.565	2.435	2.476	2.284	1.210	0.144	0.014	0.056	-0.137
2F-DFF	2.064	1.967	2.004	1.881	1.023	0.018	-0.080	-0.042	-0.165
F2F-DFF	2.245	2.138	2.155	2.004	1.050	0.145	0.039	0.056	-0.096
3F-DFF	1.807	1.725	1.736	1.634	0.961	-0.116	-0.197	-0.187	-0.288
F3F-DFF	2.043	1.952	1.980	1.862	0.983	0.077	-0.014	0.014	-0.104
/F-DPP	2.362	2.236	2.636	2.487	1.053	0.256	0.129	0.529	0.380
/F-DTT	2.470	2.346	2.354	2.180	1.202	0.066	-0.058	-0.050	-0.224
<i>l</i> F-DSS	2.503	2.372	2.336	2.163	1.273	-0.043	-0.174	-0.210	-0.383

Table S10 Vertical excitation energies ($E(S_1)v$ and $E(T_2)v$), adiabatic excitation energies ($E(S_1)$, $E(T_1)$ and $E(T_2)$) and the corresponding $\Delta E_{SF(v)}$, ΔE_{SF} , $\Delta E_{TTA(v)}$, ΔE_{TTA} in toluene (in eV).

		$E(\mathbf{S}_1)\mathbf{v}$	$E(\mathbf{S}_1)$	$E(T_2)v$	$E(T_2)$	$E(\mathbf{T}_1)$	$\Delta E_{\rm SF(v)}$	$\Delta E_{\rm SF}$	$\Delta E_{\text{TTA(v)}}$	$\Delta E_{\text{TTA.}}$
-NMe2	α	2.184	2.114	2.146	2.014	1.110	-0.036	-0.106	-0.073	-0.206
	β	2.230	2.127	1.934	1.765	1.014	0.022	-0.081	-0.274	-0.444
NH.	α	2.310	2.229	2.223	2.070	1.144	0.021	-0.060	-0.066	-0.219
-1112	β	2.374	2.291	2.138	1.979	1.121	0.132	0.049	-0.105	-0.263
OMe	α	2.397	2.297	2.339	2.165	1.175	0.047	-0.053	-0.011	-0.185
-Olvic	β	2.490	2.379	2.386	2.241	1.180	0.130	0.019	0.026	-0.119
ОН	α	2.438	2.335	2.351	2.172	1.182	0.073	-0.029	-0.013	-0.192
-011	β	2.495	2.383	2.372	2.221	1.167	0.161	0.049	0.037	-0.113
-Me	α	2.478	2.359	2.405	2.223	1.184	0.109	-0.010	0.036	-0.146
-1010	β	2.527	2.404	2.456	2.271	1.201	0.124	0.001	0.053	-0.132
-F	α	2.541	2.418	2.445	2.246	1.204	0.134	0.011	0.038	-0.161
	β	2.548	2.418	2.453	2.267	1.182	0.184	0.055	0.089	-0.096
-Cl	α	2.471	2.344	2.417	2.229	1.175	0.121	-0.005	0.067	-0.121
	β	2.540	2.408	2.475	2.287	1.196	0.149	0.017	0.083	-0.105
-Br	α	2.445	2.321	2.411	2.227	1.172	0.101	-0.023	0.067	-0.117
-DI	β	2.532	2.401	2.474	2.287	1.197	0.137	0.006	0.079	-0.108
COOMe	α	2.410	2.265	2.372	2.197	1.126	0.157	0.013	0.119	-0.056
-0001/10	β	2.575	2.436	2.529	2.328	1.228	0.118	-0.021	0.072	-0.129
СООН	α	2.419	2.273	2.374	2.199	1.123	0.174	0.027	0.129	-0.046
-00011	β	2.583	2.443	2.538	2.335	1.229	0.124	-0.016	0.079	-0.124
-CF-	α	2.555	2.408	2.494	2.297	1.178	0.198	0.051	0.137	-0.059
-013	β	2.604	2.460	2.555	2.348	1.224	0.156	0.012	0.107	-0.099
СНО	α	2.346	2.202	2.258	2.099	1.065	0.215	0.072	0.127	-0.032
-0110	β	2.572	2.432	2.508	2.314	1.225	0.123	-0.018	0.059	-0.135
-CN	α	2.414	2.267	2.348	2.177	1.104	0.206	0.059	0.140	-0.031
-CIN	β	2.588	2.440	2.553	2.350	1.223	0.142	-0.006	0.107	-0.096
NO	α	2.299	2.150	2.214	2.045	1.059	0.182	0.033	0.097	-0.072
-1NO2	β	2.590	2.435	2.562	2.360	1.222	0.146	-0.009	0.118	-0.084

Coordinates of the four dimers.

Dimer 1			
0	0.51230000	6.25870000	8.25060000
0	1.59510000	8.12320000	8.93380000
С	0.65150000	7.66590000	8.33940000
С	-0.48810000	8.20270000	7.63320000
С	-0.63420000	5.93140000	7.54440000
С	-0.94050000	4.53500000	7.39260000
С	-2.11810000	4.12810000	6.80340000
С	-2.42590000	2.81280000	6.65980000
С	-1.51650000	1.87360000	7.11210000
С	-0.34470000	2.23610000	7.67690000
С	-0.04500000	3.57290000	7.82570000
Н	-2.71930000	4.71090000	6.53620000
Н	-3.24290000	2.64600000	6.32150000
Н	-1.70490000	1.28480000	6.95070000
Н	0.22870000	1.72830000	7.95000000
Н	0.74050000	3.79320000	8.21650000
С	-1.24840000	7.09230000	7.17130000
С	-1.10230000	9.36360000	7.26010000
С	-2.38800000	7.62910000	6.46510000
0	-2.24880000	9.03630000	6.55400000
С	-0.79600000	10.76000000	7.41190000
0	-3.33160000	7.17180000	5.87070000
С	0.38150000	11.16690000	8.00110000
С	-1.69150000	11.72210000	6.97880000
С	0.68940000	12.48220000	8.14470000
Н	0.98280000	10.58410000	8.26830000
С	-1.39180000	13.05890000	7.12760000
Н	-2.47700000	11.50180000	6.58800000
С	-0.22000000	13.42140000	7.69240000
Н	1.50640000	12.64900000	8.48300000
Н	-1.96520000	13.56670000	6.85450000
Н	-0.03160000	14.01020000	7.85380000
0	-1.81470000	-1.38880000	2.85280000
0	-2.89750000	0.47570000	2.16960000
С	-1.95390000	0.01840000	2.76400000
С	-0.81430000	0.55520000	3.47020000
С	-0.66820000	-1.71610000	3.55900000
С	-0.36190000	-3.11250000	3.71070000
С	0.81570000	-3.51940000	4.30000000
С	1.12350000	-4.83470000	4.44360000

С	0.21410000	-5.77390000	3.99130000
С	-0.95770000	-5.41140000	3.42650000
С	-1.25740000	-4.07460000	3.27770000
Н	1.41690000	-2.93660000	4.56720000
Н	1.94050000	-5.00150000	4.78190000
Н	0.40260000	-6.36270000	4.15270000
Н	-1.53110000	-5.91920000	3.15340000
Н	-2.04280000	-3.85430000	2.88690000
С	-0.05390000	-0.55520000	3.93210000
С	-0.20010000	1.71610000	3.84320000
С	1.08560000	-0.01840000	4.63830000
0	0.94640000	1.38880000	4.54940000
С	-0.50640000	3.11250000	3.69150000
0	2.02920000	-0.47570000	5.23270000
С	-1.68390000	3.51940000	3.10230000
С	0.38910000	4.07460000	4.12450000
С	-1.99180000	4.83470000	2.95870000
Н	-2.28520000	2.93660000	2.83510000
С	0.08940000	5.41140000	3.97570000
Н	1.17460000	3.85430000	4.51540000
С	-1.08240000	5.77390000	3.41100000
Н	-2.80880000	5.00150000	2.62040000
Н	0.66280000	5.91920000	4.24890000
Н	-1.27080000	6.36270000	3.24960000

Dimer 2

0	0.51230000	6.25870000	8.25060000
0	1.59510000	8.12320000	8.93380000
С	0.65150000	7.66590000	8.33940000
С	-0.48810000	8.20270000	7.63320000
С	-0.63420000	5.93140000	7.54440000
С	-0.94050000	4.53500000	7.39260000
С	-2.11810000	4.12810000	6.80340000
С	-2.42590000	2.81280000	6.65980000
С	-1.51650000	1.87360000	7.11210000
С	-0.34470000	2.23610000	7.67690000
С	-0.04500000	3.57290000	7.82570000
Н	-2.71930000	4.71090000	6.53620000
Н	-3.24290000	2.64600000	6.32150000
Н	-1.70490000	1.28480000	6.95070000
Н	0.22870000	1.72830000	7.95000000
Н	0.74050000	3.79320000	8.21650000

С	-1.24840000	7.09230000	7.17130000
С	-1.10230000	9.36360000	7.26010000
С	-2.38800000	7.62910000	6.46510000
0	-2.24880000	9.03630000	6.55400000
С	-0.79600000	10.76000000	7.41190000
0	-3.33160000	7.17180000	5.87070000
С	0.38150000	11.16690000	8.00110000
С	-1.69150000	11.72210000	6.97880000
С	0.68940000	12.48220000	8.14470000
Н	0.98280000	10.58410000	8.26830000
С	-1.39180000	13.05890000	7.12760000
Н	-2.47700000	11.50180000	6.58800000
С	-0.22000000	13.42140000	7.69240000
Н	1.50640000	12.64900000	8.48300000
Н	-1.96520000	13.56670000	6.85450000
Н	-0.03160000	14.01020000	7.85380000
0	6.28930000	6.25870000	8.25060000
0	7.37210000	8.12320000	8.93380000
С	6.42850000	7.66590000	8.33940000
С	5.28890000	8.20270000	7.63320000
С	5.14280000	5.93140000	7.54440000
С	4.83650000	4.53500000	7.39260000
С	3.65890000	4.12810000	6.80340000
С	3.35110000	2.81280000	6.65980000
С	4.26050000	1.87360000	7.11210000
С	5.43230000	2.23610000	7.67690000
С	5.73200000	3.57290000	7.82570000
Н	3.05770000	4.71090000	6.53620000
Н	2.53410000	2.64600000	6.32150000
Н	4.07210000	1.28480000	6.95070000
Н	6.00570000	1.72830000	7.95000000
Н	6.51750000	3.79320000	8.21650000
С	4.52860000	7.09230000	7.17130000
С	4.67470000	9.36360000	7.26010000
С	3.38900000	7.62910000	6.46510000
0	3.52820000	9.03630000	6.55400000
С	4.98100000	10.76000000	7.41190000
0	2.44540000	7.17180000	5.87070000
С	6.15850000	11.16690000	8.00110000
С	4.08550000	11.72210000	6.97880000
С	6.46640000	12.48220000	8.14470000
Н	6.75980000	10.58410000	8.26830000
С	4.38520000	13.05890000	7.12760000
Н	3.30000000	11.50180000	6.58800000

5.55700000	13.42140000	7.69240000
7.28340000	12.64900000	8.48300000
3.81180000	13.56670000	6.85450000
5.74540000	14.01020000	7.85380000
	5.55700000 7.28340000 3.81180000 5.74540000	5.5570000013.421400007.2834000012.649000003.8118000013.566700005.7454000014.01020000

Dimer3

Ο	-1.81470000	-1.38880000	2.85280000
0	-2.89750000	0.47570000	2.16960000
С	-1.95390000	0.01840000	2.76400000
С	-0.81430000	0.55520000	3.47020000
С	-0.66820000	-1.71610000	3.55900000
С	-0.36190000	-3.11250000	3.71070000
С	0.81570000	-3.51940000	4.30000000
С	1.12350000	-4.83470000	4.44360000
С	0.21410000	-5.77390000	3.99130000
С	-0.95770000	-5.41140000	3.42650000
С	-1.25740000	-4.07460000	3.27770000
Н	1.41690000	-2.93660000	4.56720000
Н	1.94050000	-5.00150000	4.78190000
Н	0.40260000	-6.36270000	4.15270000
Н	-1.53110000	-5.91920000	3.15340000
Н	-2.04280000	-3.85430000	2.88690000
С	-0.05390000	-0.55520000	3.93210000
С	-0.20010000	1.71610000	3.84320000
С	1.08560000	-0.01840000	4.63830000
Ο	0.94640000	1.38880000	4.54940000
С	-0.50640000	3.11250000	3.69150000
Ο	2.02920000	-0.47570000	5.23270000
С	-1.68390000	3.51940000	3.10230000
С	0.38910000	4.07460000	4.12450000
С	-1.99180000	4.83470000	2.95870000
Н	-2.28520000	2.93660000	2.83510000
С	0.08940000	5.41140000	3.97570000
Н	1.17460000	3.85430000	4.51540000
С	-1.08240000	5.77390000	3.41100000
Н	-2.80880000	5.00150000	2.62040000
Н	0.66280000	5.91920000	4.24890000
Н	-1.27080000	6.36270000	3.24960000
0	-1.81470000	13.90620000	2.85280000
Ο	-2.89750000	15.77070000	2.16960000
С	-1.95390000	15.31340000	2.76400000

С	-0.81430000	15.85020000	3.47020000
С	-0.66820000	13.57890000	3.55900000
С	-0.36190000	12.18250000	3.71070000
С	0.81570000	11.77560000	4.30000000
С	1.12350000	10.46030000	4.44360000
С	0.21410000	9.52110000	3.99130000
С	-0.95770000	9.88360000	3.42650000
С	-1.25740000	11.22040000	3.27770000
Н	1.41690000	12.35840000	4.56720000
Н	1.94050000	10.29350000	4.78190000
Н	0.40260000	8.93230000	4.15270000
Н	-1.53110000	9.37580000	3.15340000
Н	-2.04280000	11.44070000	2.88690000
С	-0.05390000	14.73980000	3.93210000
С	-0.20010000	17.01110000	3.84320000
С	1.08560000	15.27660000	4.63830000
0	0.94640000	16.68380000	4.54940000
С	-0.50640000	18.40750000	3.69150000
0	2.02920000	14.81930000	5.23270000
С	-1.68390000	18.81440000	3.10230000
С	0.38910000	19.36960000	4.12450000
С	-1.99180000	20.12970000	2.95870000
Н	-2.28520000	18.23160000	2.83510000
С	0.08940000	20.70640000	3.97570000
Н	1.17460000	19.14930000	4.51540000
С	-1.08240000	21.06890000	3.41100000
Н	-2.80880000	20.29650000	2.62040000
Н	0.66280000	21.21420000	4.24890000
Н	-1.27080000	21.65770000	3.24960000

Dimer4

0	6.28930000	6.25870000	8.25060000
0	7.37210000	8.12320000	8.93380000
С	6.42850000	7.66590000	8.33940000
С	5.28890000	8.20270000	7.63320000
С	5.14280000	5.93140000	7.54440000
С	4.83650000	4.53500000	7.39260000
С	3.65890000	4.12810000	6.80340000
С	3.35110000	2.81280000	6.65980000
С	4.26050000	1.87360000	7.11210000
С	5.43230000	2.23610000	7.67690000
С	5.73200000	3.57290000	7.82570000

Н	3.05770000	4.71090000	6.53620000
Н	2.53410000	2.64600000	6.32150000
Н	4.07210000	1.28480000	6.95070000
Н	6.00570000	1.72830000	7.95000000
Н	6.51750000	3.79320000	8.21650000
С	4.52860000	7.09230000	7.17130000
С	4.67470000	9.36360000	7.26010000
С	3.38900000	7.62910000	6.46510000
0	3.52820000	9.03630000	6.55400000
С	4.98100000	10.76000000	7.41190000
0	2.44540000	7.17180000	5.87070000
С	6.15850000	11.16690000	8.00110000
С	4.08550000	11.72210000	6.97880000
С	6.46640000	12.48220000	8.14470000
Н	6.75980000	10.58410000	8.26830000
С	4.38520000	13.05890000	7.12760000
Н	3.30000000	11.50180000	6.58800000
С	5.55700000	13.42140000	7.69240000
Н	7.28340000	12.64900000	8.48300000
Н	3.81180000	13.56670000	6.85450000
Н	5.74540000	14.01020000	7.85380000
0	-1.81470000	-1.38880000	2.85280000
0	-2.89750000	0.47570000	2.16960000
С	-1.95390000	0.01840000	2.76400000
С	-0.81430000	0.55520000	3.47020000
С	-0.66820000	-1.71610000	3.55900000
С	-0.36190000	-3.11250000	3.71070000
С	0.81570000	-3.51940000	4.30000000
С	1.12350000	-4.83470000	4.44360000
С	0.21410000	-5.77390000	3.99130000
С	-0.95770000	-5.41140000	3.42650000
С	-1.25740000	-4.07460000	3.27770000
Н	1.41690000	-2.93660000	4.56720000
Н	1.94050000	-5.00150000	4.78190000
Н	0.40260000	-6.36270000	4.15270000
Н	-1.53110000	-5.91920000	3.15340000
Н	-2.04280000	-3.85430000	2.88690000
С	-0.05390000	-0.55520000	3.93210000
С	-0.20010000	1.71610000	3.84320000
С	1.08560000	-0.01840000	4.63830000
0	0.94640000	1.38880000	4.54940000
С	-0.50640000	3.11250000	3.69150000
0	2.02920000	-0.47570000	5.23270000
С	-1.68390000	3.51940000	3.10230000

С	0.38910000	4.07460000	4.12450000
С	-1.99180000	4.83470000	2.95870000
Н	-2.28520000	2.93660000	2.83510000
С	0.08940000	5.41140000	3.97570000
Н	1.17460000	3.85430000	4.51540000
С	-1.08240000	5.77390000	3.41100000
Н	-2.80880000	5.00150000	2.62040000
Н	0.66280000	5.91920000	4.24890000
Н	-1.27080000	6.36270000	3.24960000

References

- (a) T. Lu, optDFTw program v1.0, webpage: http://sobereva.com/346.
- (b) K. Zhang, B. Tieke, *Macromolecules*, 2008, **41**, 7287-7295.
- (c) C. M. Mauck, Y. J. Bae, M. Chen, N. Powers-Riggs, Y.-L. Wu, M. R. Wasielewski, *ChemPhotoChem*, 2018, 2, 223-233.
- (d) C. Hansch, A. Leo, R. W. Taft, Chem. Rev., 1991, 91, 165-195.