Supplemental Material for

Metallic to half-metallic transition driven by pressure and anion composition in niobium oxyfluoride

Eliza Dempsey1 and James Cumby1*

¹ School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ. Email: james.cumby@ed.ac.uk

FIG. S1. Variation in calculated spin down band gap for cubic NbF₃ with Hubbard U parameter for (a) optimised geometry and (b) experimental geometry (ICSD #280539).

FIG. S2. Convergence testing for DFT calculations on cubic NbF₃ to optimise (a) plane wave cutoff energy and (b) k-point grid spacing to within a tolerance of +/-0.004 eV shown by dashed lines.

FIG. S3. Calculated atomic orbital spin polarisations for the NbO_{2-x} F_{1+x} t_{2g} orbitals calculated using the LCAO projection approach within CASTEP.

FIG. S4. The variation in DFT calculated rhombohedral unit cell parameters (a) a and (b) α with pressure compared with experimental results from Carlson *et al.*^{1, 2}

FIG. S5: Birch-Murnaghan equation of state fitting for DFT geometry optimisations of both cubic ($Pm\overline{3}m$) and rhombohedral ($R\overline{3}c$) NbO_{0.6}F_{2.4} with a common tangent fit to estimate the transition pressure.

FIG. S6: Estimations of cubic to rhombohedral transition pressure for $NbO_{2-x}F_{1+x}$ determined from a common tangent approach and by comparing octahedral rotations.

FIG. S7 Calculated electron localisation function (ELF) for NbO₂F at ambient pressure shown as an isosurface (yellow). Nb atoms are shown in red whilst O/F anions are shown in blue.

FIG. S8 DFT Calculated optical band gaps for a) cubic and b) rhombohedral $NbO_{2-x}F_{1+x}$ at each composition and external pressures up to 20 GPa.

FIG. S9. DFT calculated band structure and PDOS for rhombohedral NbO₂F at an external pressure of 4 GPa.

FIG. S10. DFT calculated band structure and PDOS for cubic $NbO_{1.65}F_{1.35}$ at an external pressure of 4 GPa.

FIG. S11. DFT calculated band structure and PDOS for rhombohedral $NbO_{1.65}F_{1.35}$ at an external pressure of 6 GPa.

FIG. S12. DFT calculated band structure and PDOS for rhombohedral NbO_{0.3}F_{2.7} at ambient pressure.

FIG. S13. DFT calculated band structure and PDOS for rhombohedral NbF₃ at ambient pressure.

FIG. S14. DFT calculated band structure and PDOS for cubic NbF₃ at ambient pressure.

FIG. S15. DFT calculated electronic structure for anion-ordered supercell of cubic NbO₂F at ambient pressure (a) PDOS and supercell structure anions ordered in layers (b) PDOS and bandstructure with more disordered supercell structure.

FIG. S16. DFT calculated PDOS and supercell structure for anion-ordered cubic $NbO_{1.5}F_{1.5}$ at ambient pressure with oxygen and fluorine anions ordered over alternating sites.

FIG. S17. DFT calculated PDOS and supercell structures for anion-ordered cubic NbOF₂ at ambient pressure (a) anions ordered in layers (b) more disordered anion structure (c) analogue of S15(b) anion structure with fluorine and oxygen sites reversed.

References

- 1. S. Carlson, J. Appl. Crystallogr., 2000, **33**, 1175-1176.
- 2. S. Carlson, A.-K. Larsson and F. E. Rohrer, *Acta Crystallogr. Sect. B*, 2000, **56**, 189-196.