Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Multifunctional conjugated molecules combined with electrospun CuCoP/carbon nanofibers as a modifier of Pt counter electrode for dye-

sensitized solar cells

Fang-Sian Lin,^{a‡} Mani Sakthivel,^{b‡} Miao-Syuan Fan,^b Chien-Hsin Wu,^a Guan-Lun Fong,^b Jiang-Jen Lin,^{c,*} Ru-Jong Jeng,^{a,d,*} and Kuo-Chuan Ho^{a,b,d,*}

^a Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

^b Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

^c Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan

^d Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan

‡ F. S. Lin and M. Sakthivel contributed equally to this work.

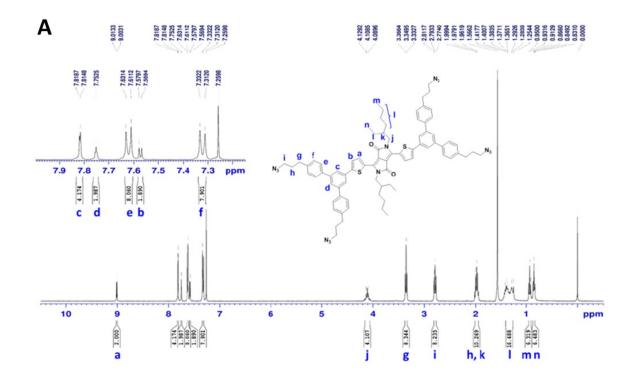
*Corresponding authors:

E-mail: jianglin@ntu.edu.tw; Fax: +886-4-2285-7017; Tel: +886-4-2285-6293 E-mail: rujong@ntu.edu.tw; Fax: +886-2-3366-5237; Tel: +886-2-3366-5884 E-mail: kcho@ntu.edu.tw; Fax: +886-2-2362-3040; Tel: +886-2-2366-0739

Materials

The part of DPPTPTA/CuCoP/CNF

3-(4-Bromophenyl)propionic acid (BrC₆H₄CH₂CH₂CO₂H, 98%), anhydrous diethyl ether (\geq 99%), lithium aluminum hydride (LAH, 95%), hydrochloric acid (HCl, 37%), bis(pinacolato)diboron (C₁₂H₂₄B₂O₄, 99%), sodium acetate(CH₃COONa, \geq 99%), anhydrous 1,4-dioxane (99.8%), PdCl₂(PPh₃)₂ ([(C₆H₅)₃P]₂PdCl₂, 98%), 1,3,5-tribromobenzene (C₆H₃Br₃, 98%), anhydrous toluene (99.8%), anhydrous ethanol (\geq 99.5%), Pd(PPh₃)₄ (Pd[(C₆H₅)₃P]₄, 99.99%), potassium carbonate (K₂CO₃, 99%), 3,6-bis(5-bromothien-2-yl)-2,5-bis(2- ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (C₄₆H₇₀Br₂N₂O₂S₂, 98%), tetrakis(triphenylphosphine)palladium(0) (Pd(P(C₆H₅)₃)₄, 99.99%), anhydrous tetrahydrofuran (THF, 99.9%), 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (C₅H₁₀F₆N₅P, 97%), 1,8-diazabicyclo[5.4.0]undec-7-ene (C₉H₁₆N₂, 98%), polyacrylonitrile (PAN, Mw=150,000), dimethylformamide (DMF, 99%), copper(II) chloride dihydrate (CuCl₂ · 2H₂O, \geq 99.0%), cobalt(II) chloride hexahydrate (CoCl₂ · 6H₂O, 98%) and red phosphorous (\geq 99.99%) were received from Merck Industrial and Lab Chemicals.


The part of photoanode preparation

Lithium perchlorate (LiClO₄, \geq 98.0%), titanium(IV) tetraisoproproxide (TTIP, >98%), 2methoxyethanol (99.95%) were obtained from Sigma-Aldrich. Lithium iodide (LiI, synthetical grade), poly(ethylene glycol) (PEG, Mw=20,000) and iodine (I₂, synthetical grade) were received from Merck Industrial and Lab Chemicals. 4-tert-butylpyridine (tBP, 96%) and tert-butyl alcohol (tBA, 96%) were procured from Acros. 3-Methoxypropionitrile (MPN, 99%) and acetonitrile (ACN, 99.99%) were bought from Fluka. 1,2-Dimethyl-3-propylimidazolium iodide (DMPII), Surlyn^{*} (SX1170-25, 25 μ m) film, transparent TiO₂ paste (TL paste, Ti-nanoxide T/SP, with an average particle size = 13 nm), and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium (II) bis(tetrabutylammonium) (N719 dye) were received from Solaronix (S.A., Aubonne, Switzerland). Fluorine-doped tin oxide (FTO) conducting glasses (7 Ω sq.⁻¹, UR-ITO007-0.7 mm) were obtained from NSG America, Inc., New Jersey, USA. The commercial light scattering TiO_2 particles (ST-41; average particle size = 200 nm) were acquired from Ishihara Sangyo, Ltd.

Cell Assembly

The TiO₂ (100 nm) paste (TTIP in 2-methoxyethanol (weight ratio = 1/3)) was coated on cleaned FTO glasses as the thin compact layers including transparent layer (10 μ m) and scattering layer (4 μ m) with an active area of 0.196 cm² by using the doctor blade technique. Herein, the commercial transparent paste (Ti-nanoxide T/SP) was used to prepare the transparent layer, while a home-made scattering paste was further used to prepare the scattering layer. Each layer was separately sintered at 500 °C for 30 min in ambient environment. After the sintering process, the TiO₂ film was immersed in N719 dye solution (5×10⁻⁴ M of N719 in *t*BA and ACN (volume ratio = 1/1) solvent) for 24 h at room temperature. Finally, the dye-adsorbed TiO₂ photoanode was coupled to PtCE (the Pt layer thickness is around 197.36 μ m and area = 3.125 cm²) with a modified layer coating, and a cell gap of 25 μ m thick Surlyn^{*} film as the spacer. The iodide/triiodide electrolyte (I⁻/I₃⁻) was prepared by mixing of 0.1 M Lil, 0.05 M I₂, 0.6 M DMPII and 0.5 M *t*BP in ACN/MPN (volume ratio = 8/2). The iodide/triiodide electrolyte electrolyte was injected into the cell gap between the two electrodes by capillarity to form a device (i.e., photoanode/electrolyte/modified layer/PtCE).

The following three-step process was carried out to prepare the above-mentioned scattering paste: (1) The TiO₂ colloid was synthesized by mixing of 0.5 M TTIP solution with 0.1 M nitric acid aqueous solution and the mixed solution was further stirred at 88 °C for 8 h. (2) The solution was then transferred into an autoclave (PARR 4540, USA) and maintained at 240 °C for 12 h. The TiO₂ nanoparticles could reach an average diameter of 20 nm at this stage. (3) The scattering layer paste was acquired by the addition of 25 wt% PEG and 100 wt% of commercial scattering TiO₂ particles (ST-41) (both with respect to the weight of TiO₂). In this case, PEG was used for not only preventing the aggregation of TiO₂ nanoparticles, but controlling the pore sizes on the TiO₂ nanoparticles as well.

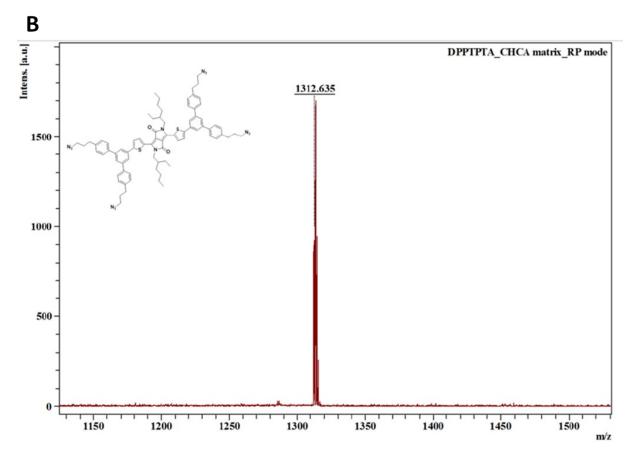
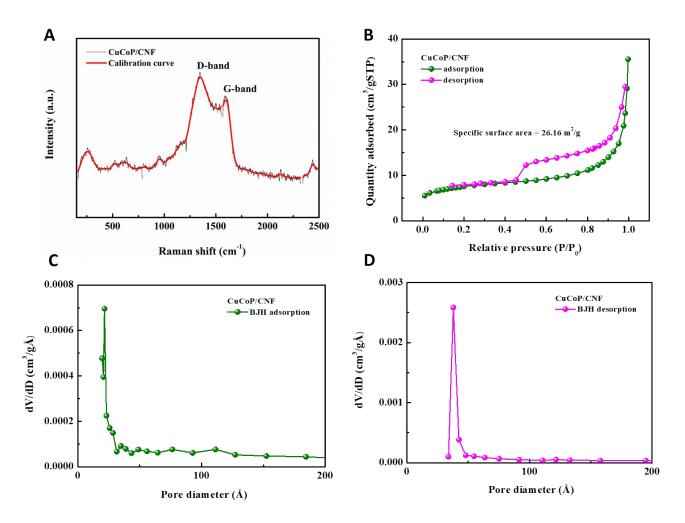



Fig. S1 (A) FT-NMR spectrum of DPPTPTA, and (B) MALDI-TOF mass spectrum results.

Fig. S2 (A) In-situ Raman spectroscopy, (B) nitrogen adsorption/desorption isotherm, (C) BJH adsorption curve and (D) BJH desorption curve of CuCoP/CNF.

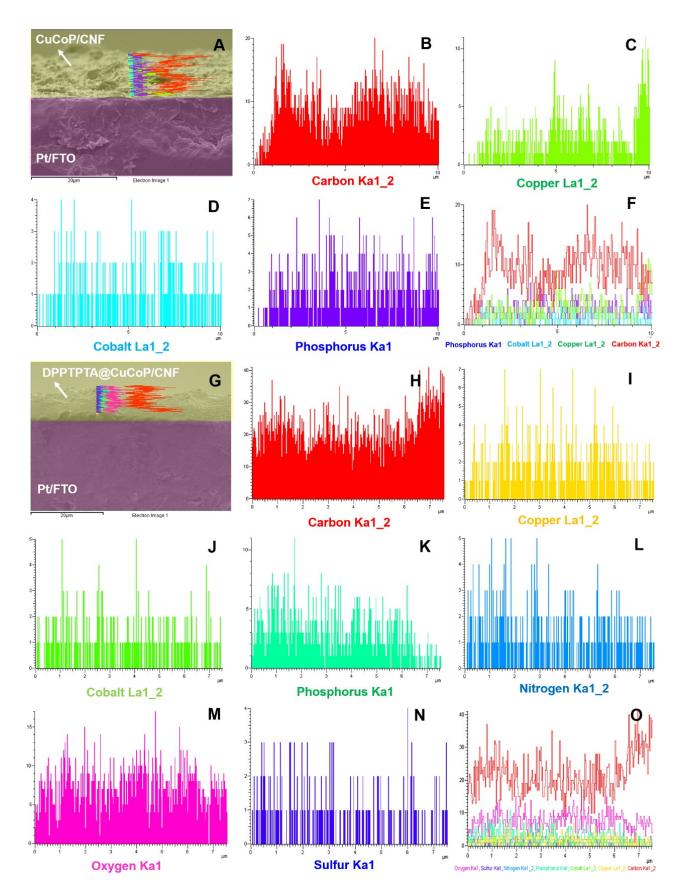


Fig. S3 Elemental line mapping profile of (A-F) for CuCoP/CNF and (G-O) for DPPTPTA@CuCoP/CNF.

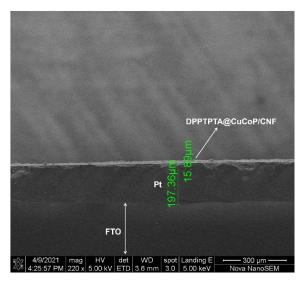
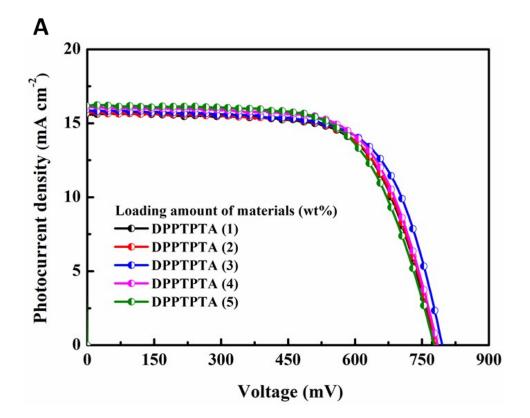
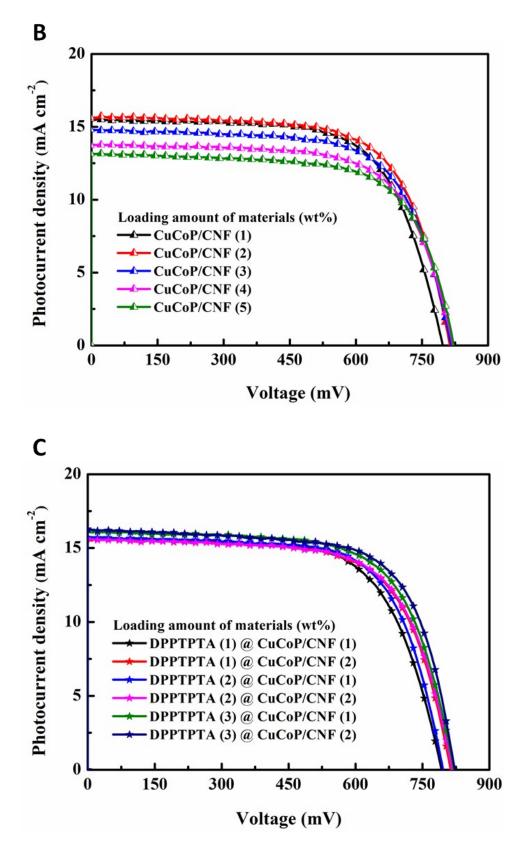




Fig. S4 Cross-sectional FE-SEM image of DPPTPTA@CuCoP/CNF modified PtCE.

Fig. S5 The photocurrent density-voltage curves of DSSCs with different loading amounts of (A) bare DPPTPTA, (B) bare CuCoP/CNF, and (C) **DPPTPTA@CuCoP/CNF**.

Fig. S6 (A) Visual photograph of white as-spun membrane (before carbonization at 900°C) and bare CuCoP/CNF (black). (B) Visual photograph of the electrode with **DPPTPTA@CuCoP/CNF** modified layer and bare PtCE before soaking in iodide electrolyte for 168 h, and (C) after soaking in iodide electrolyte for 168 h. (D-F) FE-SEM images of bare PtCE after soaking in iodide electrolyte for 168 h. (G-I) FE-SEM images of the electrode with **DPPTPTA@CuCoP/CNF** modified layer after soaking in iodide electrolyte for 168 h. (J-L) FE-SEM images of PtCE after removing the **DPPTPTA@CuCoP/CNF** modified layer after soaking in iodide electrolyte for 168 h.

Modified layers (wt%)	η (%)	V _{oc} (mV)	J _{sc} (mA cm ⁻²)	FF
DPPTPTA (1)	8.28 ± 0.03	779 ± 2	15.63 ± 0.02	0.68 ± 0.01
CuCoP/CNF (1)	8.24 ± 0.03	796 ± 1	15.50 ± 0.03	0.67 ± 0.00
DPPTPTA (2)	8.31 ± 0.05	781 ± 1	15.70 ± 0.05	0.68 ± 0.01
CuCoP/CNF (2)	8.59 ± 0.02	813 ± 2	15.61 ± 0.04	0.68 ± 0.00
DPPTPTA (3)	8.53 ± 0.03	793 ± 2	15.86 ± 0.02	0.68 ± 0.02
CuCoP/CNF (3)	8.14 ± 0.02	815 ± 1	14.78 ± 0.02	0.68 ± 0.00
DPPTPTA (4)	8.49 ± 0.02	784 ± 2	16.08 ± 0.06	0.67 ± 0.01
CuCoP/CNF (4)	7.62 ± 0.01	820 ± 2	13.76 ± 0.05	0.68 ± 0.00
DPPTPTA (5)	8.25 ± 0.06	776 ± 1	16.20 ± 0.02	0.66 ± 0.02
CuCoP/CNF (5)	7.47 ± 0.02	827 ± 2	13.20 ± 0.03	0.68 ± 0.00

Table S1 The photovoltaic performance of DSSCs with DPPTPTA and CuCoP/CNF alone as the modified layers under 1 sun conditions.^a

^a The standard deviation data for each DSSC are obtained based on three cells.

 Table S2 The photovoltaic performance of DSSCs with DPPTPTA@CuCoP/CNF of different loading

 amounts as the modified layers under 1 sun conditions.^a

Modified layers (wt%)	η (%)	V _{oc} (mV)	<i>J_{sc}</i> (mA cm ⁻²)	FF
DPPTPTA (1) @ CuCoP/CNF (1)	8.26 ± 0.02	791 ± 1	15.66 ± 0.02	0.67 ± 0.01
DPPTPTA (1) @ CuCoP/CNF (2)	8.55 ± 0.02	813 ± 2	15.53 ± 0.05	0.68 ± 0.00
DPPTPTA (2) @ CuCoP/CNF (1)	8.54 ± 0.01	796 ± 2	15.75 ± 0.03	0.68 ± 0.00
DPPTPTA (2) @ CuCoP/CNF (2)	8.58 ± 0.03	815 ± 1	15.58 ± 0.02	0.68 ± 0.01
DPPTPTA (3) @ CuCoP/CNF (1)	8.91 ± 0.04	820 ± 1	16.08 ± 0.04	0.68 ± 0.00
DPPTPTA (3) @ CuCoP/CNF (2)	9.50 ± 0.02	827 ± 2	16.25 ± 0.02	0.71 ± 0.00

^a The standard deviation data for each DSSC are obtained based on three cells.