Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting information

Supplementary Material S1: Intensity distribution profiles of the incident azimuthally (left) or radially (right) polarized beam in the focal region. The profiles were calculated for a 1064 nm incident beam corresponding to the two different objectives employed in this work with numerical apertures of respectively 0.9 in air (top) and of 1.3 in oil (bottom)

Supplementary Material S2: Schematic of Δn estimation taking into account topology corrections.

d_x: topological depth (measured by AFM)

d >>> d_x and can be considered to be 2.5 μ m (poled layer measured by SHG

microscopy) [38]

 $n_1 = 1.83$ (measured by the Brewster angle) [38]

 $OP_1 = n_1.d$ $OP_x = n_x.(d-d_x) + n_{air}.d_x = n_1.(d-d_x) + d_x$ $OPD = OP_x - OP_1$ Then:

 $n_x = \frac{OPD - dx + n_1.d}{d - dx}$

And:

 $\Delta n = n_{x} - n_{1}$

Sample	G-70/4	G-4/4
n_1	1.83	1.83
d	2.5 μm	2.5 μm
d_x (Figure 5)	100 nm	75 nm
OPD (Figure 6)	60 nm	45 nm
n _x	1.839	1.837
Δn	0.009	0.007