Supporting Information

Highly thermostable fluoride nanocrystal-in-glass composite (NGC) for mid-infrared emission

Dandan Yang^{a,b†}, Tianzhu Zhao^{a†}, Heng Liang^a, Juan Kang^a, Xiongjian Huang^{a,c},

Qiwen Pan^{a,c*}, Guoping Dong^{a*}

^a State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

^b Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China

^c School of Physics and Optoelectronic, South China University of Technology, Guangzhou 510640, China

⁺ These authors contributed equally to this work.

* To whom correspondence should be addressed

E-mail: panqiwen@scut.edu.cn (Q.W. Pan); dgp@scut.edu.cn (G.P. Dong)

Fig. S1 Ultraviolet-visible-infrared transmission spectrum of the as-prepared tellurite glass matrix.

The inset is the photograph of the as-prepared tellurite glass matrix.

Fig. S2 (a) Fourier transform-infrared spectroscopy spectra of the as-prepared NaYF₄: Er^{3+} nanocrystals (NCs) and their thermal annealing at 500 °C for 2 h. (b) Transmission electron microscopy (TEM) image (top left), high-resolution TEM image (bottom left), and selected area electron diffraction pattern (right) of a single as-prepared NaYF₄: Er^{3+} NC.

Fig. S3 Thermogravimetry-differential scanning calorimetry (TG-DSC) curves of the as-prepared NaYF₄: Er^{3+} NCs in air atmosphere with a heating rate of 10 °C/min.

DSC curve exhibits two endothermic peaks and one exothermic peak. The first endothermic peak at 270.5 °C is due to the dehydration and combustion of the surface organic ligands, which results in a weight loss of 2.67%. The exothermic peak at 480.9 °C and the endothermic peak at 692.4 °C correspond to the phase transition between cubic (α) and hexagonal (β) NaYF₄. The vaporization of some residual organic ligands during this process leads to a weight loss of 0.6%.

Fig. S4 (a) X-ray diffraction (XRD) patterns and (b) scanning electron microscopy (SEM) images of NaYF₄: $Er^{3+}@SiO_2$ NCs prepared at different mass ratios between NaYF₄: Er^{3+} NCs and tetraethyl orthosilicate (TEOS). Insets in (b) are corresponding TEM images.

Fig. S5 (a) TG-DSC curves of the as-prepared NaYF₄: $Er^{3+}@SiO_2$ NCs in air atmosphere with a heating rate of 10 °C/min.

The DSC curve shows there are no endothermic or exothermic peaks below 800 °C, indicating as-prepared NaYF₄:Er³⁺@SiO₂ NCs did not go through phase transition processes. But during this temperature range, there is a 5.37% weight loss. This can be attributed to the dehydration and combustion of surface organic ligands. Due to the protection of the SiO₂ shell, this is a very slow process, so that no endothermic peak was detected. When the temperature is above 800 °C, there is an endothermic process. According to the XRD pattern of α -NaYF₄:Er³⁺@SiO₂ NCs annealed at 800 °C (**Fig. S9**), this endothermic process is a complex process, including the phase transformation between α - and β -NaYF₄ as well as the reaction between NaYF₄ and SiO₂.

Fig. S6 XRD patterns of NaYF₄:Er³⁺@SiO₂ NCs prepared at different mass ratios between NaYF₄:Er³⁺

NCs and TEOS annealed at different temperatures for 2 h: (a) 500 °C, (b) 700 °C.

Fig. S7 SEM images of NaYF₄:Er³⁺@SiO₂ NCs prepared at different mass ratios between NaYF₄:Er³⁺

NCs and TEOS annealed at 500 °C and 700 °C for 2 h, respectively.

Fig. S8 FTIR spectra of the as-prepared NaYF₄:Er³⁺@SiO₂ NCs and their thermal annealing at 700 °C

for 2 h.

Fig. S9 (a) XRD patterns and (b) SEM image of the as-prepared NaYF₄:Er³⁺@SiO₂ NCs annealed at 800 °C for 2 h.

As shown in this Figure, when increasing the annealing temperature to 800 °C, multiple crystalline phases appear in the samples, including α -NaYF₄, β -NaYF₄, and silicon oxides. This indicates that at higher temperature (\geq 800 °C), NaYF₄ would react with SiO₂ shell, and without protection of SiO₂ shell, most unreacted α -NaYF₄ would transform into β -NaYF₄. This series of transitions also led to a serious morphological collapse. Accordingly, the highest thermal stability temperature of the as-prepared NaYF₄:Er³⁺@SiO₂ NCs is 700 °C.

Fig. S10 (a) Compositional analysis and (b) XRD patterns of NaYF₄:Er³⁺@SiO₂ NCs annealed at 700 °C

for 2 h before and after hydrofluoric acid (HF) treatment.