ARTICLE

High-pressure structural phase transitions and metallization in layered HfS₂ under different hydrostatic environments up to 42.1 GPa

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 22th April 2022.

Meiling Hong,^{ab} Lidong Dai,^{*a} Haiying Hu,^{*a} Xinyu Zhang,^{ab} Chuang Li^{ab} and Yu He^{ab}

Supplementary Figure 1. Transmission electron microscope equipped with an energy dispersive X-ray spectroscopy (TEM-EDS) of the starting HfS₂ sample.

^{a.} Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China. Email: dailidong@vip.gyig.ac.cn, huhaiying@vip.gyig.ac.cn

^{b.} University of Chinese Academy of Sciences, Beijing 100049, China

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

Supplementary Figure 3. (a) and (b) represent the optical microscope images of sample chamber under non-hydrostatic and hydrostatic conditions, respectively. In here, PM stands for pressure medium. (c) The relations between deviatoric stress and pressure under different hydrostatic environments.

Supplementary Figure 4. Three-dimensional surface topography images of atomic force microscopy (AFM) and their correspondent distance-height relationships for HfS_2 . Herein, (a) and (b) represent the starting sample; (c) and (d) are the recovered sample decompressed from 38.2 GPa under non-hydrostatic condition; (e) and (f) stand for the recovered sample released from 37.9 GPa under hydrostatic condition. Herein, PM represents pressure medium.

ARTICLE

Supplementary Table 1. The relationship between diffraction angle (20) and full width at half maximum (FWHM) for HfS₂.

2θ (°)	FWHM (cm ⁻¹)
14.99	0.210±0.033
28.31	0.171±0.040
30.38	0.219±0.040
32.22	0.272±0.065
42.07	0.328±0.042
46.37	0.350±0.111
50.18	0.179±0.039
52.70	0.222±0.052
55.28	0.401±0.048
58.66	0.183±0.033
59.87	0.312±0.097
60.95	0.279±0.0908
63.36	0.410±0.062
67.54	0.376±0.100