Supporting Information

An Effective Encapsulation for Perovskite Solar Cells Based on Its Building Integration Photovoltaics

Qi Wei^{a §}, Xiaonan Huo^{b §}, Qiang Fu^a, Ting Wang^a, Heming Zhao^a, Yixuan Wang^a, Jiansong Yang^a, Siqi Zhan^a, Liang Zhou^c, Shiwei Wang^{a} and Peng-gang Yin^{b*}*

^a School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China, E-mail: wswjldx2004@163.com (S. Wang)

^b Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China, E-mail: pgyin@buaa.edu.cn (P. Yin)

^c Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, P.R. China.

[§]Q. Wei and X. Huo contributed equally to this work.

Fig. S1 95.1% of the transmittance is for the AHMA/Glass (control), and 94.9% after 180 days under light illumination.

Fig. S2 The water contact angle of AHMA with different acrylic acid content.

Fig. S3 Lead ion concentration tracking of PbNO₃ solution (pH=4.2) soaked with AHMA film at 40 °C (140 mg of AHMA coated on 25*25mm of glass).

Fig. S4 Shear strength between glass and AHMA with different content of acrylic acid. Two glasses sheets bonded by a AHMA film (12.5 mm * 25 mm). It was measured on an electronic universal testing machine at a deflection rate of 5 mm/min.

Fig. S5 TG curves of AHMA with 7% of acrylic acid.

Fig. S6 Good cold resistance of the AHMA materials has been confirmed, the bond shear strength of which at -20 °C is consistent with that at room temperature.

Fig. S7 The shear strengths among AHMA with different materials of each layer in photovoltaic building integrated module.

Fig. S8 Lead leakage on perovskite modules. (a) Image of the PSCs encapsulated with PVBglass. (b) Images of the damaged PSCs encapsulated with PVB-glass by falling ball impact with a 100 g of steel ball at 50.8 cm of high. (c) Images of the damaged PSCs after dripping by heavy rainfall (pH=4.2) at 5 mL h⁻¹ for 6 h.

Fig. S9 Images of the damaged PSCs soaking in 40 mL of water (pH=4.2 and 6.8).

Fig. S10 Setup of water-dripping tests. Photograph of the setup for water-dripping tests.

Fig. S11 After soaking in water for 24 hours, the bonding shear strength between AHMA with 7% of acrylic acid and glass decreased by less than 0.05 MPa.

Time (min)	Pb concentration (ppm)	
0	10.52	
15	10.09	
30	10.09	
60	10.09	
100	10.09	
180	10.09	

Table S1. Lead ion concentration tracking of PbNO₃ solution (pH= 4.2) soaked with AHMA film at 40 $^{\circ}$ C (140 mg of AHMA coated on 25*25mm of glass).

Table S2. The water contact angle of AHMA film with different acrylic acid content; Shear strength between glass and AHMA with different content of acrylic acid; Adhesion holding force between glass and AHMA with different acrylic acid content at 70 °C, based on 12*25 mm of the adhesive area and 500 g of the weight.

Water contact angle (°)	Shearing strength (MPa)	Time(s)
94.5	0.08	45
75.7	0.15	62
69.6	0.40	91
68.2	0.91	103
65.3	0.34	98
	Water contact angle (°) 94.5 75.7 69.6 68.2 65.3	Water contact angle (°) Shearing strength (MPa) 94.5 0.08 75.7 0.15 69.6 0.40 68.2 0.91 65.3 0.34

 Table S3. The shear strengths among AHMA with different materials of each layer in

 photovoltaic building integrated module.

Material	Shearing strength (MPa)	
Glass	0.89	
SnO_2	0.89	
FAMAPbI ₃	1.04	
Spiro-OMeTAD	0.69	
AU	0.84	
PVB	0.84	

Table S4. Lead leakage on perovskite modules. Non-encapsulated (Control) and AHMA-PVB-Glass encapsulated (Encapsulation) PSCs, impact resistance of which was detected by free fall impact with a 100 g of steel ball at 50.8 cm of high. Images of the damaged PSCs after soaking in 40 mL of water (pH=4.2 and 6.8) for different time. Detection of Pb²⁺ concentration in water after soaking with damaged PSC modules with and without encapsulation.

Time	Control	Encapsulation	Encapsulation
(min)	pH=4.2	pH=4.2	pH=6.8
0	0	0	0
30	2.868	1.138	0.1106
60	3.807	1.104	0.1705
90	4.100	0.8094	0.0637
120	4.317	0.8090	0.4262
150	4.500	1.079	0.1476
180	4.607	0.8244	0.4045

Table S5. Detection of Pb²⁺ concentration in solution from the damaged PSC modules with and without encapsulation by dripping with heavy rainfall for different time.

Time (h)	AHMA-PVB	PVB	Control
1.5	0.0010	0.1039	2.384
3	0.3915	0.5479	3.524
6	0.7029	1.992	17.32

Table S6. Summary of the photovoltaic parameters obtained from the champion devices for preand post-encapsulation. Measurements were performed with 0.0625 cm² active area and under AM 1.5G solar illumination.

Sample	V _{oc}	J _{sc}	FF	PCE
	(V)	(mA cm ⁻²)		(%)
Control (reverse)	1.14	24.13	0.79	21.78
Control (forward)	1.13	24.24	0.80	21.96
Encapsulation (reverse)	1.12	24.20	0.76	20.59
Encapsulation (forward)	1.12	24.21	0.77	20.88

Movie S1.

Falling ball impact (100 g of steel balls, 50.8 cm) video of unencapsulated devices.

Movie S2.

Falling ball impact (100 g of steel balls, 50.8 cm) video of encapsulated devices.