A single-component white-light-emitting fluorescent material with high color rendering index based on resonance energy

transfer

Ci'an Xie,^a Zekun Wang,^a Haojun Yu,^a Juyu Yang,^a Yan-gai Liu,*^a and

Lefu Mei,*a

^aBeijing Key Laboratory situ of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, 29 Xueyuan Road, Beijing, 100083, China

*Corresponding authors: E-mail: <u>liuyang@cugb.edu.cn (</u>Yan-gai Liu) E-mail: <u>mlf@cugb.edu.cn (</u>Lefu Mei)

	CZGL:0.003Eu ²⁺ ,0.02Mn ²⁺
a=b (Å)	10.40355
c (Å)	37.4514
V (Å ³)	3510.44
R _p (%)	4.55
R_{wp} (%)	6.28
Rexp(%)	3.38
gof	1.85
Space group	R ³ c
crystal type	trigonal

Table S1 XRD Rietveld refinements parameters for Ca₈ZnGa_{0.4}La_{0.6}(PO₄)₇: 0.003Eu²⁺, 0.02Mn²⁺.

Table S2 CIE values of Ca₈ZnGa_{0.4}La_{0.6}(PO₄)₇: 0.003Eu²⁺, yMn²⁺ solid solutions

Mn ²⁺ amount (y)	CIE coo	Peak		
_	Х	У	Wavelength (nm)	
0	0.2305	0.3269	490.0	
0.008	0.2608	0.2514	425.0	
0.01	0.2741	0.2579	424.2	
0.02	0.3093	0.2634	424.4	
0.04	0.3601	0.2670	631.2	
0.05	0.3814	0.2957	631.2	
0.06	0.3891	0.3053	630.2	

IF(mA)	CIE coo	rdinates	Tc(K)	Ra	Average wavelength		
-	Х	У	-		(nm)		
60	0.3715	0.3504	4058	83.3	575		
120	0.3719	0.3622	4136	88.2	574.5		
180	0.3717	0.3705	4203	91.4	572.9		
240	0.3707	0.3752	4265	93.4	571.2		
300	0.3709	0.3780	4277	94.7	570.1		

 Table S3 CIE values of fabricated WLEDs at different currents.

Table S4 The luminous efficacy of the fabricated WLEDs at different currents

IF (mA)	luminous efficacy (lm/W)
60	1.11
120	0.99
180	0.91
240	0.84
300	0.79

IF (mA)	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15
60	78.3	87.3	97	77.8	78	81.7	92.4	74.1	37.1	72.7	72.8	64.8	79.7	97.3	75.1
120	84.7	91.7	97.3	84.1	84.9	87.4	94	81.7	56.3	82	80.4	76.2	86	97.6	83.3
180	89	94.6	97.1	88.2	89.5	91.1	94.9	86.9	69.9	88.3	85.5	83.8	90.3	97.8	88.8
240	91.7	96.2	97.1	90.9	92.3	93	95.6	90.5	79.1	91.7	88.6	88.1	92.8	97.9	92.4
300	93.4	97.1	97.1	92.5	94.1	94.1	96.2	93.1	86	93.7	90.6	90.4	94.4	98.1	94.7

 Table S5 The R1-R15 values of the fabricated WLEDs

Figure S1. Higher precision XRD patterns of CZGL: 0.003Eu²⁺, yMn²⁺ in the range of 30.8°~31.8°.

Figure S2. (a) SEM and elemental mapping patterns of CZGL:0.003Eu²⁺; (b) HRTEM image of CZGL:0.003Eu²⁺ and (c) selected area electron diffraction pattern.

Figure S3. Gaussian fitting results of the PL peaks for Eu^{2+} doped $Ca_8ZnGa_{0.4}La_{0.6}(PO_4)_7$.

Figure S4. High-resolution XPS spectra at Eu 3d and Mn 2p position of CZGL: 0.003Eu²⁺, 0.02Mn²⁺ phosphors.

Figure S5. Wavelength-dependent PL decay curves of CZGL: Eu²⁺ by 365 nm excitation at room temperature.

Figure S6. Color coordinates of WLED device under different operating currents.