Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information for:

Mimicking Biological Synaptic Plasticity with

a Leaky Charge-Trap FinFET

Ji-Man Yu,^a Joon-Kyu Han,^a and Yang-Kyu Choi^{a*}

^a School of Electrical Engineering, 291 Daehak-ro, Korea Advanced Institute of Science and Technology

(KAIST), Daejeon 34141, Republic of Korea

1. Fabrication procedure of the leaky-charge trap (LCT) FinFET

Figure S1. Process flow of the LCT-FinFET fabrication.

Figure S1a shows the basic sequential process flow used to fabricate the LCT-FinFET. A p-type 8-inch silicon-on-insulator (SOI) wafer with (100) crystal orientation was used as a starting material. The thickness of the top Si and the buried oxide (BOX), were 145 nm and 400 nm, respectively (**Figure S1b**). The thickness of the top Si was thinned to 40 nm by thermal oxidation and subsequent wet etching with diluted HF. Using conventional photo-lithography and plasma etching, it was patterned to define the Si-fin as a channel (**Figure S1c**). Afterwards, nitride (Si₃N₄) with a thickness of 3.5 nm was deposited by low-pressure chemical vapor deposition (LPCVD) for a charge trap layer (**Figure S1d**). Tetraethyl orthosilicate (TEOS) oxide with 2 nm thickness was deposited as a blocking layer and then *in-situ* heavily doped n⁺ gate poly-silicon (poly-Si) with 100 nm thickness was sequentially deposited by LPCVD (**Figure S1e**). It was then planarized by chemical-

mechanical polishing (CMP). Then, nitride was deposited by LPCVD, to serve as a hard-mask for patterning the gate electrode (**Figure S1f**). After patterning the hard-mask nitride using gate photo-lithography (**Figure S1g**), the photoresist (PR) was removed. With the aid of the etching stopper (hard-mask nitride) the poly-Si gate was patterend by plasma etching (**Figure S1h**). Afterwards, the residual hard-mask nitride was eliminated during the formation of sidewall spacers (**Figure S1i**). Source and drain (S/D) regions were doped with arsenic by ion implantation with a dose of 5×10^{15} cm⁻². Lastly, dopants were activated by a rapid thermal annealing (RTA) process at 1000 °C for 5 sec (**Figure S1j**). Forming gas annealing (FGA) with diluted H₂ gas was adopted to minimize the trap density at the interface of the charge trap nitride (Si₃N₄) and the Si-fin.

а b С 100 100 $\Delta V_{\rm T} = V_{\rm T,REV} - V_{\rm T,FWD}$ Uniformity of 20 different devices $V_{\rm D} = 50 \,\mathrm{mV}$ Cumulative distribution (%) Cumulative distribution (%) 10-6 80 80 Drain Current, I_D (A) 10 60 10-60 10-40 40 10-10 10-1 20 20 10-1 0 10-13 0.8 1.0 1 2 V_G [V] -1.0 -0.8 -0.6 -0.4 0.4 0.6 -1.2 ò -2 -1 3 Gate Voltage, Forward Threshold Voltage, V_{T,FWD} (V) Hysteresis Voltage, $\Delta V_{T}(V)$

2. Device-to-device variability of LCT-FinFETs

Figure S2. Device-to-device variability of 20 different LCT-FinFETs. a, Transfer characteristics $(I_D - V_G)$, b, Threshold voltage with forward bias sweeping $(V_{T,FWD})$, and c, Hysteresis voltage window (ΔV_T) .

Device-to-device variability was determined for 20 different LCT-FinFETs, as shown in **Figure S2**. Three basic parameters, transfer characteristics (I_D - V_G), threshold voltage with forward bias sweeping ($V_{T,FWD}$),

and hysteresis voltage window ($\Delta V_{\rm T}$) were measured. Here, $\Delta V_{\rm T}$ is defined as the difference in the threshold voltage between forward biasing and reverse biasing, *i.e.*, $\Delta V_{\rm T} = V_{\rm T,REV} - V_{\rm T,FWD}$. Twenty different devices were randomly selected among all the LCT-FinFETs on an 8-inch wafer. Although there were some limitations due to the university equipment and facility, fairly uniform characteristics were obtained using a 100% CMOS process. This uniformity is expected to be further improved if industrial facilities used for mass-production are employed.

3. PSC and PPF index after inhibition spike

Figure S3. Inhibitory post-synatpic current (IPSC) response. a, IPSC after a single positive pre-synaptic spike, b, Inhibitory PPF index with respect to different time intervals ($\Delta t_{interval}$).

Figure S4. Memory transition from sensory memory (SM) *via* short-term memory (STM) to long-term memory (LTM) according to positive $V_{\rm G}$. STM and LTM plasticities also coexisted in the inhibitory operation.

Figure S3a shows the IPSC after a single positive pre-synaptic spike with a V_G of 5 V and t_G of 10 µs. The post-synaptic current was reduced after the inhibitory spike. In addition, the inhibitory PPF index with respect to different time intervals ($\Delta t_{interval}$) was also well-fitted to a double-expontial decay function (**Figure S3b**). Memory transition from SM *via* STM to LTM was also achieved in the inhibitory operation (Figure S4). When a V_G of +5 V was applied, the change in synaptic weight (ΔW) was reduced to less than |5| % prior to 50 sec. In contrast, when the V_G of +6 V was biased, a ΔW of more than |20| % was maintained even after 200 sec.

Energy consumption by applied pre-synaptic voltage			
	Pre-synaptic pulse	Gate current (I_G)	Energy Consumption
	$(V_{\rm G}, t_{\rm G})$		$(V_{\rm G} \cdot I_{\rm G} \cdot t_{\rm G})$
Excitatory	(-5 V, 10 µs)	-1.15 nA	57.5 fJ/spike
Inhibitory	(+5 V, 10 µs)	1.29 nA	64.5 fJ/spike

4. Energy consumed during for modulation of synaptic plasticity

Table S1 shows the energy consumed with an applied pre-synaptic voltage of V_G and t_G , to modulate synaptic plasticity. Although the tunneling barrier layer was removed to enable leaky-charge characteristics, the blocking oxide layer (TEOS) suppresses gate leakage current (I_G) while applying pre-synaptic spikes. When \pm 5 V pre-synaptic pulses were applied, the measured I_G were 1.29 nA and -1.15 nA, respectively. As a consequence, the energy consumption while modulating the synaptic plasticity was approximately 60 fJ/spike, which is comparable to the energy consumption of a biological synapse in the human brain (10 fJ/spike).

5. Spike timing dependent plasticity (STDP) according to synaptic learning rule

Figure S5. STDP synaptic learning rule. a, Schematic illustration of the applied pre- and post-synaptic spikes applied for symmetric behavior. **b**, Symmetric Hebbian behavior. **c**, Symmetric anti-Hebbian behavior can be observed when opposite polarity pre- and post- synaptic spikes were applied to the case in **Figure S5a**.

In the STDP synaptic learning rule, synaptic plasticity is modulated in response to the time interval ($\Delta t_{interval}$) between the pre- and post- synaptic spike (V_{pre} and V_{post}). Figure S5a shows the waveform of an applied preand post-synaptic spike. To reduce the hot carrier effect induced by the high lateral electric field ($E_{lateral}$) between the source and drain, a small amplitude of 2 V (V_D) was used as a post-synaptic spike. ΔW is wellfitted to a Gaussian distribution, which shows a typical symmetric Hebbian and a symmetric anti-Hebbian learning behavior, as shown in Figures S5b and c.