Optimising Conformational Effects on Thermally Activated Delayed Fluorescence

Alessandro Landi,
 a* Daniele Padula b†

 ^aDipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
 ^bDipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy

Supporting Information

^{*}To whom correspondence should be addressed. Email: <code>alelandi1@unisa.it</code>

 $^{^{\}dagger}\mathrm{To}$ whom correspondence should be addressed. Email: daniele.padula@unisi.it

Contents

S1 Fermi's Golden Rule	$\mathbf{S3}$
S2 Franck-Condon Weighted Densities of States	$\mathbf{S5}$
S3 Kinetic Model	S 7
S4 PES Scans	S 7
S5 Designed Derivatives	$\mathbf{S9}$
S6 Characterisation of Electronic Transitions	$\mathbf{S9}$
S7 Comparison of TADF quantities for derivatized molecules – T_1 geometry	S 11
References	$\mathbf{S11}$

List of Figures

$\mathbf{S1}$	FCWDs for PET
S2	FCWDs for PHT
$\mathbf{S3}$	QM relaxed scans on S_0 PES
$\mathbf{S4}$	ACPM QM relaxed scans on S_1 and T_1 PES $\ldots \ldots \ldots \ldots \ldots S_8$
$\mathbf{S5}$	Comparison of S_0 and S_1 equilibrium geometries
$\mathbf{S6}$	Frontier molecular orbitals involved in electronic transitions
$\mathbf{S7}$	Dependence of M06-2X electronic properties on torsional coordinates

List of Tables

$\mathbf{S1}$	Kinetic Model Rates
S2	Density Functionals Analysis
$\mathbf{S3}$	Electronic Transitions Analysis
$\mathbf{S4}$	TADF properties at T_1 geometry

We provide optimised geometries, and the implementation of the kinetic model at this public GitHub repository https://github.com/dpadula85/PareTADF.

S1 Fermi's Golden Rule

We evaluated rate constants by first order time-dependent perturbation theory, Fermi's Golden Rule (FGR), whose general form is reported in Eq. 1 in the main text.

As discussed in the main text, FGR final form depends on the process involved, 1-3 i.e. non-radiative transition, spontaneous emission or absorption.

In the cases of interest here, the $S_1 \rightarrow T_1$ transition is a non radiative transition, and the Fermi Golden Rule assumes the form:

$$k_{ij,nr} = \frac{2\pi}{\hbar} |SOC_{ij}|^2 F(\Delta E_{ij}, T).$$
(S1)

where SOC_{ij} is the spin-orbit coupling element, $F(\Delta E_{ij}, T)$ is the Franck-Condon weighted density of states (FCWD) and ΔE_{ij} is the energy difference between the two electronic states. On the other hand, when dealing with a spontaneous emission, ^{1,3–6} the FGR rates expression is

$$k_{ij,em} = \int_{-\infty}^{+\infty} \frac{64\pi^4 \nu^3}{3hc} |\mu_{ij}|^2 F(h\nu, T) d(h).$$
(S2)

where μ is the dipole moment operator for the $S_1 \rightarrow S_0$ transition and the integration goes over the whole frequency spectrum.

In both cases, the FCWD $F(\Delta E_{ab}, T)$ is defined as:

$$F(\Delta E_{ab}, T) = \frac{1}{Z} \sum_{v_a, v_b} e^{-\beta E_{v_i}} |\langle v_a | v_b \rangle|^2 \delta (E_{v_b} - E_{v_a} - \Delta E)$$
(S3)

where $\langle v_a | v_b \rangle$ is the Franck-Condon integral, Z is the vibrational partition function of the initial electronic state, $\beta = 1/(k_{\rm B}T)$, and the sum runs over all vibrational states of $|a\rangle$ and $|b\rangle$.

Here, we have adopted for its evaluation the generating function (GF) approach,^{1,2} which, in the framework of harmonic approximation for nuclear motion, allows to compute $F(\Delta E_{ab}, T)$ considering the whole set of the molecular normal modes of both initial and final states, taking into account the effects due to both changes of the equilibrium positions and of vibrational frequencies, as well as the effects due to normal mode mixing. The GF approach allows to handle the infinite summations appearing in Eq. S3 exploiting the integral representation of Dirac's delta function and Duschinsky's normal mode transformation:⁷

$$\mathbf{Q}_a = \mathbf{J}\mathbf{Q}_b + \mathbf{K} \tag{S4}$$

where **J** and **K** are the rotation matrix and the equilibrium displacement vector, respectively, while \mathbf{Q}_a and \mathbf{Q}_b are the normal coordinates of the electronic states $|a\rangle$ and $|b\rangle$.

We obtained Franck-Condon weighted densities of states (FCWDs) using a development version of the MolFC package,⁸ using (TD-)DFT/B3LYP-D3/6-31G(d) for geometry optimisations and normal modes analyses. We adopted the curvilinear coordinate representation of normal modes, to prevent that large displacements of an angular coordinate could reflect into large shifts from the equilibrium positions of the involved bond distances. Such unphysical effect is unavoidable when using rectilinear coordinates and requires the use of high order anharmonic potentials for its correction.^{9,10}

Finally, the rates of endoergonic processes (such as rISC) are obtained from those of the reverse processes using the principle of detailed balance:^{11,12}

$$k_{ba} = k_{ab} \times \exp\left(-\frac{\Delta E_{ba}}{k_{\rm B}T}\right),\tag{S5}$$

where k_{ab} is evaluated at ΔE_{ab} , $k_{\rm B}$ is the Boltzmann constant and T is the temperature.

S2 Franck-Condon Weighted Densities of States

Fig. S1: Franck-Condon weighted densities of states at T = 298 K as a function of the energy difference from the initial and the final states for the S1 \rightarrow T1 transition. TOP: tn4t. Bottom: acpm.

Fig. S2: Franck-Condon weighted densities of states at T = 298 K as a function of the energy difference from the initial and the final states for the S1 \rightarrow S0 transition. TOP: tn4t. Bottom: acpm.

S3 Kinetic Model

Dye	k_{em} / s ⁻¹	$k_{ISC} \ / \ {\rm s}^{-1}$	k_{rISC} / s ⁻¹	k_{nr} / s ⁻¹
TN4T min	$2.1 imes 10^9$	$9.7 imes 10^7$	$3.5 imes 10^2$	$3.2 imes 10^8$
TN4T opt ratio	$1.9 imes 10^8$	$1.1 imes 10^6$	$1.0 imes 10^6$	$2.9 imes 10^7$
ACPM min	6.2×10^3	$6.9 imes 10^3$	4.6×10^3	1.2×10^3
ACPM opt ratio	1.0×10^6	1.0×10^6	8.7×10^4	$2.0 imes 10^5$

Table S1: Rates of the processes considered for the integration of Eq. 4.

S4 PES Scans

Fig. S3: Fit of QM relaxed scans on S_0 PES along the torsional coordinates highlighted in Fig. 4 for TN4T (left) and ACPM (right) derivatives.

Fig. S4: Fit of QM relaxed scans on S_1 (top) and T_1 (bottom) PESs along θ_1 (left) and θ_2 (right) torsional coordinates for ACPM.

S5 Designed Derivatives

Fig. S5: S_0 (blue) and S_1 (red) minimum geometries for TN4T (left) and ACPM (right) derivatives.

S6 Characterisation of Electronic Transitions

Dye	Functional	E_{HOMO} / eV	E_{LUMO} / eV	E_{S_1} / eV	E_{T_1} / eV	f_{S_1}	ΔE_{ST} / eV
TN4T	Expt.	-5.76	-2.56	3.13	3.03		0.10
TN4T	B3LYP	-5.59	-2.03	3.10	2.78	0.31	0.32
TN4T	M06-2X	-6.85	-1.25	3.97	3.39	0.61	0.58
TN4T	CAM-B3LYP	-6.86	-0.85	4.07	2.94	0.67	1.13
TN4T	PBE0	-5.87	-1.98	3.29	2.80	0.35	0.48
TN4T	$\omega B97X-D$	-7.47	-0.32	4.21	3.11	0.77	1.10
ACPM	Expt.	-5.68	-2.70	3.10	2.80		0.30
ACPM	B3LYP	-5.11	-1.63	2.89	2.88	0.0	0.01
ACPM	M06-2X	-6.41	-0.78	3.88	3.59	0.0	0.29
ACPM	CAM-B3LYP	-6.43	-0.40	4.00	2.97	0.0	1.03
ACPM	PBE0	-5.38	-1.57	3.08	2.98	0.0	0.10
ACPM	$\omega B97X-D$	-7.03	0.13	4.17	3.14	0.0	1.03

Table S2: Characterisation of electronic properties with various density functionals in combination with 6-31G* basis set. B3LYP, CAM-B3LYP and PBE0 calculations include Grimme's dispersion correction.¹³

Dye	E_{S_1} / eV	Assignment	Δr_{S_1} / Å	E_{T_1} / eV	Assignment	Δr_{t_1} / Å
TN4T ACPM	$3.10 \\ 2.89$	HOMO→LUMO HOMO→LUMO	$6.53 \\ 5.99$	$2.78 \\ 2.88$	HOMO→LUMO HOMO→LUMO	$5.94 \\ 5.99$

Table S3: Analysis of electronic transitions to relevant excited states, with assignment and charge transfermetrics. 14

Fig. S6: HOMO (top) and LUMO (bottom) involved in electronic transitions for TN4T (left) and ACPM (right).

Fig. S7: TDDFT/M06-2X/6-31G* ΔE_{ST} and f_{S_1} as a function of θ_1 and θ_2 for TN4T.

S7 Comparison of TADF quantities for derivatized molecules – T_1 geometry

	θ_1	θ_2	ΔE_{ST} / eV	f_{S_1}	$\langle T_1 \hat{H}_{SO} S_1 \rangle / \mathrm{cm}^{-1}$	$k_{rISC} \ / \ {\rm s}^{-1}$	$k_{ISC} \ / \ {\rm s}^{-1}$	k_{em} / s ⁻¹
TN4T min	0	44	0.67	0.65	0.53	9.45×10^{-4}	1.73×10^8	1.91×10^9
TN4T planar	0	0	0.84	0.92	0.38	$3.56 imes 10^{-7}$	$6.89 imes 10^7$	3.80×10^9
TN4T deriv	-40	0	0.61	0.59	0.27	2.00×10^{-3}	4.82×10^7	1.73×10^9
ACPM min	0	120	0.41	0.28	0.42	2.95	3.06×10^7	$3.01e\times 10^7$
ACPM planar	0	0	0.78	0.57	0.40	1.44×10^{-6}	$2.16 imes 10^7$	$5.55 imes 10^7$
ACPM deriv	3	156	0.81	0.79	0.23	1.24×10^{-7}	$6.86 imes 10^6$	2.78×10^7

Table S4: Comparison of properties and rates relevant for TADF for TN4T and ACPM intheir equilibrium geometry, in their planar conformation, and in the conformation forced by the
proposed derivatisation. All data refer to the T_1 geometry

References

- [S1] R. Kubo and Y. Toyozawa, Prog. Theor. Phys., 1955, 13, 160–182.
- [S2] M. Lax, J. Chem. Phys., 1952, 20, 1752–1760.
- [S3] T. Pizza, MSc thesis, Universitá degli studi di Salerno, 2020.

- [S4] A. Velardo, R. Borrelli, A. Capobianco, A. Landi and A. Peluso, J. Phys. Chem. C, 2019, 123, 14173–14179.
- [S5] Z. Shuai, L. Wang and C. Song, Theory of Charge Transport in Carbon Electronic Materials, Springer Press, 2012.
- [S6] L. Wang, G. Nan, X. Yang, Q. Peng, Q. Li and Z. Shuai, Chem. Soc. Rev., 2010, 39, 423–434.
- [S7] R. Borrelli and A. Peluso, WIREs: Comput. Mol. Sci., 2013, 3, 542–559.
- [S8] R. Borrelli and A. Peluso, MolFC: A program for Franck-Condon integrals calculation, Package available online at http://www.theochem.unisa.it.
- [S9] R. Borrelli, M. Di Donato and A. Peluso, *Biophys. J.*, 2005, 89, 830–841.
- [S10] A. Peluso, R. Borrelli and A. Capobianco, J. Phys. Chem. A, 2013, 117, 10985–10985.
- [S11] H. Sumi and T. Kakitani, Chem. Phys. Lett., 1996, 252, 85–93.
- [S12] T. Renger and R. A. Marcus, J. Phys. Chem. A, 2003, 107, 8404–8419.
- [S13] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [S14] C. A. Guido, P. Cortona, B. Mennucci and C. Adamo, J. Chem. Theory Comput., 2013, 9, 3118–3126.