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S1. PHASE TRANSITIONS DRIVEN BY SOFT PHONON MODES

Harmonic phonon dispersion calculations have been carried out to determine the phonon
eigendisplacement vectors with a set of atomic displacements while considering the related
symmetries of the crystal structures containing the displaced atoms. Note that the imaginary
frequencies in the phonon dispersion curve are indicative of soft phonon modes (in the first
Brillouin zone) that drives the specific phase transition, namely at the Γ (0,0,0), X (1

2
, 0, 0),

M (1
2
, 1
2
, 0), and R (1

2
, 1
2
, 1
2
) q-points. At the Γ q-point, only one soft phonon mode (Γ−

4 )
appears at 5.103iTHz with a three-fold degeneracy. At the M q-point, there are two non-
degenerate soft phonon modes shown at 3.516iTHz and 1.655iTHz, which correspond to
the M+

2 and M−
2 mode, respectively. At the R q-point, there is one three-fold degenerated

soft phonon mode (R−
5 ) at 3.838iTHz, while at the X q-point, one soft phonon mode (X+

5 )
is located at 2.931iTHz with a two-fold degeneracy.
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(a) (b)

Figure S1. DFT-PBEsol phonon band structure for the aristotype cubic NaNbO3 (U phase;

Pm3̄m) – (a) without and (b) with the non-analytical-term correction (NAC) [1] applied to dy-

namical matrix, respectively.
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Table S1. DFT-PBEsol (imaginary) phonon frequencies (in THz) and their degeneracies, irre-

ducible representations (IR with modes labelled), directions of the order parameter, crystal sym-

metries of the relaxed structure, the number of atoms per cell, and their calculated relative energies

(in meV/formula-unit) with respect to the cubic Pm3̄m (U) NaNbO3 phase.

ω (THz) Degeneracy Mode Direction Symmetry No. of atoms ∆E (meV/f.u.)

5.103i 3 Γ−
4 (a, 0, 0) P4mm 5 −30.5

(a, a, 0) Amm2 10 −32.5

(a, a, a) R3m 15 −31.8

3.838i 3 R−
5 (a, 0, 0) I4/mcm 20 −70.8

(a, a, 0) Imma 20 −81.9

(a, a, a) R3̄c 30 −79.2

3.516i 1 M+
2 (a; 0; 0) P4/mbm 10 −66.2

2.931i 2 X+
5 (0, a; 0, 0; 0, 0) Pmma 10 −4.0

(a, a; 0, 0; 0, 0) Cmcm 20 −4.1

1.655i 1 M−
2 (a; 0; 0) P4/nmm 10 −2.8
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Table S2. DFT-PBEsol optimized crystal phases of NaNbO3 known from experiments: Crystal

symmetries of the relaxed structure, irreducible representations (IR with modes labelled), directions

of the order parameter, basis vectors, the number of atoms per cell, and their calculated relative

energies (in meV/formula-unit) with respect to the cubic Pm3̄m (U) NaNbO3 phase.

Symmetry Mode(s) Direction(s) Basis vector No. of

atoms

∆E

(meV/f.u.)

Pm3̄m (U) - - (1, 1, 1) 5 0

P4mm Γ−
4 (a, 0, 0) (1, 1, 1) 5 −31.8

R3m Γ−
4 (a, a, a) (

√
2,
√
2,
√
3) 15 −32.8

Amm2 Γ−
4 (a, a, 0) (

√
2,
√
2, 1) 10 −33.7

P4/mbm (T2) M+
2 (a; 0; 0) (

√
2,
√
2, 1) 10 −66.2

I4/mcm T2 (a, 0; 0, 0; 0, 0) (
√
2,
√
2, 4) 40 −68.5

P4/mbm M+
2 , T2 (a, 0, 0),

(a, 0; 0, 0; 0, 0)

(
√
2,
√
2, 3) 30 −69.3

I4/mcm R−
5 (a, 0, 0) (

√
2,
√
2, 4) 20 −70.8

R3̄c R−
5 (a, a, a) (

√
2,
√
2, 2

√
3) 30 −79.2

Imma R−
5 (0, a,−a) (

√
2, 2,

√
2) 20 −81.9

Cmcm (T1) M+
2 , R−

5 (a; 0; 0), (0, 0, a) (2, 2, 2) 40 −84.8

Pmmn (S) M+
2 , R−

5 (a; b; 0), (0, 0, a) (2, 2, 4) 80 −87.3

Pnma M+
2 , R−

5 (a; 0; 0), (0, a, a) (
√
2, 2,

√
2) 20 −92.9

Pmmn (R) M+
2 , R−

5 , T2 (0; a; b), (a, 0, 0),

(0, 0; a, 0; 0, 0)

(2, 6, 2) 120 −101.4

Pnma (R) M+
2 , R−

5 , T2 (0; 0; a), (0, a, 0),

(0, a, 0, 0, 0, 0)

(2, 2, 6) 120 −102.0

Pmc21 (Q) M+
2 , R−

5 , Γ−
4 (a; 0; 0), (0, a, a),

(a, a, 0)

(2,
√
2,
√
2) 20 −109.8

Pbcm (P ) R−
5 , T2 (0, a, a),

(a, 0; 0, 0; 0, 0)

(
√
2,
√
2, 4) 40 −110.0

R3c (N) R−
5 , Γ−

4 (a, a, a), (a, a, a) (
√
2,
√
2, 2

√
3) 30 −112.0
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S2. RATIONALIZATION OF POTENTIAL ENERGY SURFACES (PES) BY

SYMMETRY-ADAPTED MODE ANALYSIS

Potential energy surfaces (PES) are graphed based on the symmetry-adapted modes with
diverse and feasible combinations of any two major modes with considering both competitive
and cooperative relations between the modes in lowering the overall energy of the crystal
during a phase transition. The phonon mode amplitudes, Q (in Å) of the R−

5 , ∆5, and T2

modes are normalized to match the Q values in the P phase while the corresponding Q

values for Γ−
4 and M+

2 are also normalized for the Q phase in a similar fashion. To paint a
simple picture of this competitive or/and cooperative relationship between the major phonon
modes, the PES for different sets of combinatorial modes can be found in Figures S2 and S3
(competitive relations) and Figures S4 and S5 (cooperative relations).
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Figure S2. (Left column) Potential energy surface (PES) constructed via the anti-polar ∆5 mode

versus the polar Γ−
4 mode, where all other modes are not included, i.e., QT2 ,QM+

2
, and QR−

5
= 0.

(Middle column; From top to bottom) PES now constructed by including only one other mode:

QT2 = 1, QR−
5
= 1, and QM+

2
= 1 (in addition to ∆5 and Γ−

4 ), respectively. (Right column; From

top to bottom) PES now includes the additional consideration of two other modes (other than ∆5

and Γ−
4 ): QT2QR−

5
= 1 and QM+

2
QR−

5
= 1, respectively.
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Figure S3. (Left column) Potential energy surface (PES) constructed via the in-phase/out-of-

phase (a0a0a+/a0a0a−) rotation T2 mode versus the in-phase (a0a0a+) rotation M+
2 mode, where

all other modes are not included, i.e., Q∆5 ,QΓ−
4

, and QR−
5

= 0. (Middle column; From top

to bottom) PES now constructed by including only one other mode: Q∆5 = 1, QR−
5

= 1, and

QΓ−
4
= 1 (in addition to T2 and M+

2 ), respectively. (Right column; From top to bottom) PES now

includes the additional consideration of two other modes (other than T2 and M+
2 ): Q∆5QR−

5
= 1

and QΓ−
4
QR−

5
= 1, respectively.
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Figure S4. (Left) Potential energy surface (PES) constructed via the in-phase/out-of-phase

(a0a0a+/a0a0a−) rotation T2 mode versus the out-of-phase (a−a−a0) tilting R−
5 mode, where

all other modes are not included, i.e., Q∆5 ,QΓ−
4

, and QM+
2

= 0. (Right) PES constructed via

the in-phase (a0a0a+) rotation M+
2 mode versus the out-of-phase tilting R−

5 mode, where all other

modes are not included, i.e., Q∆5 ,QΓ−
4

, and QT2 = 0.
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Figure S5. Similar to Figures S2 to S4, moving to left to right for each row, the interplay of two

selected modes are chosen, firstly with all other modes set to zero, and with the inclusion of one

more specific mode, and then the inclusion of two more modes.
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