Electronic Supplementary Information

Imine bond orientation manipulates AIEgens derived Schiff bases isomers through intramolecular hydrogen bond effect for different fluorescent properties and applications

Da Li^a, Xiaozhong Liang^a, Fang Zhang^b, Jie Li^a, Zheng Zhang^a, Sijing Wang^a, Zhijun Li^a, Yifan Xing^a, Kunpeng Guo^a*

a Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China

b Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong, 030600, China.

Contents

1.	Experimental section	2
2.	Figures	6
3.	Tables	15
4.	¹ H NMR and ¹³ C NMR	24

Experimental section

1.1 Materials and instruments

4'-(1,2,2-triphenylvinyl) biphenyl-4-amine (1NA), 4-(2-thienyl) aniline (3NA), 4'-(1,2,2-triphenylethenyl) biphenyl-4-formaldehyde (1CA), and 4'-(diphenylamino)-[1,1'-biphenyl]-4-carbaldehyde (2CA) were purchased from Zhengzhou Alpha Chemical Co. LTD. N, N-diphenylbenzidine (2NA) and 4-(2-thienyl) benzaldeyde (3CA) were supplied by Shenzhen Atomax Chemical Co. LTD. All chemicals and reagents involved in this work were used directly as obtained commercially unless otherwise stated.

NMR spectra measurements were carried out at a Bruker NMR 600 MHz for ¹H NMR and 150 MHz for ¹³C NMR, using DMSO-*d*6, CDCl₃ and acetone-*d*6 as solvents. Chemical shifts were reported in parts per million (ppm) relative to internal TMS (0 ppm). Splitting patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), or multiplet (m). Mass spectra measured on Microflex MALDI-TOF MS. Single-crystal X-ray diffraction data were collected on an Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer. The crystal was kept at 173.00 (10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using least-squares technique. UV-Vis spectra were recorded in a HITIACH U-3900 spectrometer. Photoluminescent (PL) spectra were recorded in a HITACHI F-4700 spectrofluorometer. Theoretical calculations using density functional theory (DFT) were performed using the Gaussian09 package at the B3LYP/6-31G(d) level.

1.2 Synthesis

Scheme S1 Synthetic routes of 1–3NC and 1–3CN.

Synthesis of 1NC ((E)-2-(((4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl) imino) methyl) phenol)

A solution of **1NA** (120 mg, 0.28 mmol) and salicylaldehyde (70 mg, 0.57 mmol) in anhydrous ethanol (15 mL) was stirred under reflux for 6 h. After filtration, **1NC** was afforded as light green solid (82 mg, yield 68.3%) by washing the precipitate several times with ethanol. ¹H NMR (600 MHz, DMSO-*d*6) δ (ppm): 13.11 (s, 1H), 9.03 (s, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.51 (dd, *J* = 28.2, 8.4 Hz, 4H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.15 (m, 10H), 7.04 (m, 5H), 6.98 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 162.17, 161.17, 147.35, 143.72, 143.70, 143.68, 143.03, 141.25, 140.42, 139.37, 137.91, 133.17, 132.27, 131.89, 131.42, 131.36, 127.80, 127.73, 127.66, 126.55, 126.53, 126.47, 126.03, 121.57, 119.27, 119.10, 117.28. MALDI-TOF: m/z [M]+ cacld. C₃₉H₂₉NO, 527.2210; found: 527.2209.

Synthesis of 1CN ((E)-2-(((4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl) methylene) amino) phenol)

A solution of **1CA** (120 mg, 0.27 mmol) and *o*-aminophenol (60 mg, 0.55 mmol) in anhydrous ethanol (15 mL) was stirred under reflux for 6 h. After filtration, **1CN** was afforded as light green solid (85 mg, yield 71%) by washing the precipitate several times with ethanol. ¹H NMR (600 MHz, DMSO-*d*6) δ (ppm): 8.99 (s, 1H), 8.71 (s, 1H), 8.05 (m, 2H), 7.76 (m, 2H), 7.57 (m, 2H), 7.20 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.14 (m, 9H), 7.07 (m, 3H), 7.03 (m, 2H), 7.01 (m, 2H), 6.97 (m, 2H), 6.88 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.82 (td, *J* = 7.2, 1.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 156.58, 152.37, 143.84, 143.69, 143.65, 143.64, 143.61, 141.47, 140.31, 137.69, 135.56, 134.64, 131.98, 131.42, 131.36, 131.35, 129.24, 128.91, 127.83, 127.76, 127.68, 127.22, 126.62, 126.58, 126.53, 126.29, 120.13, 115.81, 115.00. MALDI-TOF: m/z [M]+ cacld. C₃₉H₂₉NO, 527.2210; found: 527.2207.

Synthesis of 2NC ((E)-2-(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl) imino) methyl) phenol)

The synthetic route of **2NC** was the same as that for **1NC**, except that **1NA** was replaced with **2NA**. After filtration, **2NC** was afforded as light yellow solid (103 mg,

yield 86%) by washing the precipitate several times with ethanol. ¹H NMR (600 MHz, DMSO-*d*6) δ (ppm): 13.17 (s, 1H), 9.04 (s, 1H), 7.75 (dt, *J* = 8.4 Hz, 2H), 7.67 (dd, *J* = 8.0, 5.8 Hz, 3H), 7.51 (dt, *J* = 8.4 Hz, 2H), 7.43 (ddd, *J* = 8.4, 7.2, 1.8 Hz, 1H), 7.34 (dd, *J* = 8.4, 7.2 Hz, 4H), 7.07 (m, 9H), 6.99 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 162.01, 161.17, 147.59, 147.40, 147.00, 139.40, 134.03, 133.12, 132.24, 129.32, 127.59, 127.51, 124.52, 123.78, 123.06, 121.64, 119.30, 119.09, 117.27. MALDI-TOF: m/z [M]+ cacld. C₃₁H₂₄N₂O, 440.1900; found: 440.1898.

Synthesis of 2CN ((E)-2-(((4'-(diphenylamino)-[1,1'-biphenyl]-4-yl) methylene) amino) phenol)

The synthetic route of **2CN** was the same as that for **1CN**, except that **1CA** was replaced with **2CA**. After filtration, **2CN** was afforded as yellow solid (98 mg; 82%) by washing the precipitate several times with ethanol. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 8.73 (s, 1H), 7.97 (d, J = 1.2, 2H), 7.70 (d, J = 8.4, 2H), 7.54 (d, J = 7.2, 2H), 7.33 (dd, J = 7.8, 1.2 Hz, 1H), 7.29 (td, J = 7.3, 2.1 Hz, 5H), 7.20 (td, J = 4.8, 1H), 7.15 (m, 6H), 7.06 (td, J = 7.8, 1.2 Hz, 2H), 7.03 (dd, J = 8.4, 1.2 Hz, 1H), 6.92 (td, J = 7.8, 1.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.01, 147.84, 147.50, 134.65, 129.35, 129.32, 129.16, 127.82, 126.79, 125.89, 124.65, 123.53, 123.21, 120.92. MALDI-TOF: m/z [M]+ cacld. C₃₁H₂₄N₂O, 440.1900; found: 440.1897.

Synthesis of 3NC ((E)-2-(((4-(thiophen-2-yl) phenyl) imino) methyl) phenol)

The synthetic route of **3NC** was the same as that for **1NC**, except that **1NA** was replaced with **3NA**. After filtration, **3NC** was afforded as yellow solid (95 mg; 79%) by washing the precipitate several times with ethanol. ¹H NMR (600 MHz, DMSO-*d*6) δ (ppm): 13.08 (s, 1H), 9.03 (s, 1H), 7.76 (dt, J = 8.4 Hz, 2H), 7.68 (dd, J = 7.8, 2.4 Hz, 1H), 7.58 (m, 2H), 7.49 (dt, J = 6.6 Hz, 2H), 7.43 (t, J = 7.8 Hz, 1H), 7.16 (dd, J = 5.4 Hz, 3.6 Hz, 1H), 6.99 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 162.17, 161.16, 147.47, 143.62, 133.23, 132.30, 128.18, 126.86, 125.08, 123.26, 121.76,119.23, 119.14, 117.29. MALDI-TOF: m/z [M]+ cacld. C₁₇H₁₃NOS, 279.0721; found: 279.0719.

Synthesis of 3CN ((E)-2-((4-(thiophen-2-yl) benzylidene) amino) phenol)

The synthetic route of 3CN was the same as that for 1CN, except that 1CA was

replaced with **3CA**. After filtration, **3CN** was afforded as yellow solid (102 mg; 85%) by washing the precipitate several times with ethanol. ¹H NMR (600 MHz, acetone-*d*6) δ (ppm): (s, 1H), 8.11 (m, 2H), 8.02 (s, 1H), 7.82 (m, 2H), 7.61 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.55 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.42 (dd, *J* = 6.0, 1.8 Hz, 1H), 7.17 (m, 2H), 6.94 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.89 (td, *J* = 7.2Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 156.25, 152.37, 143.37, 137.45, 135.50, 134.79, 129.42, 128.96, 128.36, 126.06, 124.21, 120.14, 115.80, 115.01. MALDI-TOF: m/z [M]+ cacld. C₁₇H₁₃NOS, 279.0721; found: 279.0720.

Synthesis of RC ((E)-1-(2-methoxyphenyl)-N-(4'-(1,2,2-triphenylvinyl)-[1,1'biphenyl]-4-yl) methanimine)

The synthetic route of **RC** was the same as that for **1NC**, except that salicylaldehyde was replaced with 2-methoxybenzaldehyde. After filtration, **RC** was afforded as yellow solid (127 mg; 83.8%) by washing the precipitate several times with ethanol. ¹H NMR (600 MHz, DMSO-*d6*) δ (ppm) 8.66 (s, 1H), 7.71 (m, 3H), 7.49 (m, 2H), 7.44 (m, 5H), 7.37 (m, 17H), 7.05 (m, 2H), 3.87 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d6*) δ (ppm) 159.83, 159.60, 153.70, 153.16, 149.56, 142.47, 141.59, 139.60, 139.28, 138.89, 132.47, 131.36, 130.56, 130.54, 130.51, 128.96, 128.81, 128.23, 128.20, 128.17, 127.32, 127.28, 127.11, 126.37, 122.61, 122.23, 113.62, 55.78. MALDI-TOF: m/z [M]+ cacld. C₄₀H₃₁NO, 541.2410; found: 542.2410.

1.3 UV–vis and fluorescence spectroscopic analytical procedure

The stock solutions (2.5 mM) were obtained by dissolving the requisite amounts of **1–3NC** and **1–3CN** in acetone solvent, respectively. The standard stock solutions (10 mM) were prepared by dissolving the appropriate amount metal salts of Al³⁺, Zn²⁺, Fe³⁺, Cu²⁺, Ag⁺, Hg²⁺, Pb²⁺, Cr³⁺, Cd²⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, Ni²⁺, Mn²⁺, Fe²⁺ and Co²⁺ in deionized water, respectively. UV–vis and fluorescence measurements were performed in a acetone/H₂O (v:v, 1:99) solution containing the tested compounds (1– **3NC** or 1–**3CN**, 25 μ M). Fluorescence and UV-vis spectra were measured after addition of the ions at room temperature to equilibrium. Fluorescence measurements were carried out with excitation of 365 nm.

1.4 Recovery experiments in real water samples

The real water samples including tap water and drinking water collected from Taiyuan University of Technology which need no further purification and river water collected from Fenhe River which should be filtered out of the suspended solids with filter paper. The recovery experiments were carried out by spiking the known concentrations of $Al^{3+}(Zn^{2+})$ into different water samples and then analyzing with the same detection method in triple replicates. The detected Al^{3+} (or Zn^{2+}) concentrations were calculated by the fluorescent response compared to that in corresponding deionized samples. Then, the recovery percentages were calculated to evaluate the degree of deviation of the detected value compared to the amount of spiked Al^{3+} (or Zn^{2+}).

1.5 Preparation of test papers

The test papers were obtained by soaking the filter paper in the acetone solution of the sensor (5 mM) and then removing for drying in the air. After metal ions were dripped on the test papers coated with 1–3NC and 1–3CN and dried in the air, different response patterns were observed under 365 nm UV lamp and quantized by the fluorescence spectra, respectively.

2. Figures

Fig. S1 Molecular structures and geometrically optimized 3D molecular models of 1– **3NC** and 1–**3CN** by DFT B3LYP/6-31G(d) calculation.

Fig. S2 Crystal structures of (a) **2NC** and (b) **2CN**. Molecular packing of (c) **2NC** and (d) **2CN** crystals. Multiple intermolecular and intramolecular interactions in crystals of (e) **2NC** and (f) **2CN** with indicated distances (Å).

Fig. S3 Crystal structures of (a) **3NC** and (b) **3CN**. Molecular packing of (c) **3NC** and (d) **3CN** crystals. Multiple intermolecular and intramolecular interactions in crystals of (e) **3NC** and (f) **3CN** with indicated distances (Å).

Fig. S4 Single cell units of (a) 1NC, (b) 1CN, (c) 2NC, (d) 2CN, (e) 3NC and (f) 3CN.

Fig. S5 Normalized absorption spectra of 1-3NC and 1-3CN in acetone solution (25 μ M).

Fig. S6 Frontier molecular orbital diagram of 1–3NC and 1–3CN by DFT calculation.

Fig. S7 PL spectra of (a) **1NA**, (c) **2NA**, (e) **3NA** in the mixture of acetone/H₂O (25 μ M, f_w from 0 to 90%) and the corresponding variations in PL intensity (I/I₀) of (b) **1NA**, (d) **2NA**, (f) **3NA** with f_w .

Fig. S8 Emission spectra of (a) **1CA**, (c) **2CA**, (e) **3CA** in the mixture of acetone/H₂O (25 μ M, f_w from 0 to 90%) and the corresponding variations in PL intensity (I/I₀) of (b) **1CA**, (d) **2CA**, (f) **3CA** with f_w .

Fig. S9 Partial ¹H NMR spectra of (a) **1–3NC** and (b) **1–3CN**.

Fig. S10 Synthetic routes of compound RC.

Fig. S11 Emission spectra of **RC** in the mixture of acetone/H₂O (25 μ M, f_w from 0 to 90%). Inset: Variations in PL intensity (I/I₀) with f_w .

Fig. S12 Absorption spectra of (a) **1NC** (25 μ M) and (b) **1CN** (25 μ M) towards metal ions (10 mM) in acetone/H₂O mixture (v: v, 1: 99).

Fig. S13 Emission spectra of the test papers made of (a) 1NC (25 μ M) and (b) 1CN (25 μ M) dripped with various metal ions.

Fig. S14 Absorption spectra of (a) **2NC** (25 μ M) and (b) **3NC** (25 μ M) towards metal ions (10 mM) in acetone/ H₂O mixture (v: v, 1: 99). The images of (c) **2NC** and (d) **3NC** towards metal ions on test papers.

Fig. S15 Absorption spectra of (a) **2CN** (25 μ M) and (b) **3CN** (25 μ M) towards metal ions (10 mM) in acetone/H₂O mixture (v: v, 1: 99). The images of (c) **2CN** and (d) **3CN** towards metal ions on test papers.

Fig. S16 PL intensity of **1CN** (25 μ M) at (a) 492 nm and (b) 592 nm in the presence of other competing metal ions (10 mM) before and after adding Al³⁺ (10 mM) and Zn²⁺ (10 mM) in acetone/H₂O mixture (v: v, 1: 99), respectively.

Fig. S17 Fluorescent colorimetric cards for detection of Al^{3+} and Zn^{2+} .

Fig. S18 Absorption spectra of (a) **1CN** (25 μ M) with Al³⁺ (10 mM) and (b) Zn²⁺ (10 mM) in the mixture of acetone/H₂O (f_w from 0 to 90%).

Fig. S19 Benesi-Hildebrand plot of 1CN towards (a) Al^{3+} and (b) Zn^{2+} .

3. Tables

Table S1 Crysta	ıl data and	l structure refinement f	for 1NC	CCDC:	2107085
-----------------	-------------	--------------------------	----------------	-------	---------

Identification code	1NC
Empirical formula	C ₃₉ H ₂₉ NO
Formula weight	527.63
Temperature/K	202(40)
Crystal system	monoclinic
Space group	$P2_1/n$

a/Å	9.9207(3)
b/Å	9.2558(3)
c/Å	61.9023(18)
$\alpha/^{\circ}$	90.00
β/°	90.167(3)
γ/°	90.00
Volume/Å ³	5684.1(3)
Z	8
$\rho_{calc}g/cm^3$	1.233
μ/mm^{-1}	0.563
F(000)	2224.0
Crystal size/mm ³	$0.07\times0.02\times0.01$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.58 to 139.88
Index ranges	$-11 \le h \le 11, -11 \le k \le 7, -74 \le l \le 65$
Reflections collected	23812
Independent reflections	10543 [$R_{int} = 0.0382$, $R_{sigma} = 0.0487$]
Data/restraints/parameters	10543/43/768
Goodness-of-fit on F ²	1.108
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0885, wR_2 = 0.1989$
Final R indexes [all data]	$R_1 = 0.1009, wR_2 = 0.2053$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.39

Table S2 Crystal data and structure refinement for 1CN CCDC: 2107068

Identification code	1CN
Empirical formula	$C_{78}H_{58}N_2O_2$

Formula weight	1055.26
Temperature/K	293.63(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.9949(7)
b/Å	9.4404(9)
c/Å	61.749(5)
$\alpha/^{\circ}$	90.00
β/°	91.980(7)
$\gamma/^{\circ}$	90.00
Volume/Å ³	5822.8(8)
Z	4
$\rho_{calc}g/cm^3$	1.204
µ/mm ⁻¹	0.550
F(000)	2224.0
Crystal size/mm ³	$0.09 \times 0.07 \times 0.03$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.6 to 142.38
Index ranges	$-6 \le h \le 11, -11 \le k \le 10, -74 \le 1 \le 69$
Reflections collected	21827
Independent reflections	10708 [$R_{int} = 0.0525, R_{sigma} = 0.0831$]
Data/restraints/parameters	10708/0/741
Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0930, wR_2 = 0.2058$
Final R indexes [all data]	$R_1 = 0.1319, wR_2 = 0.2317$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.28

Identification code	2NC
Empirical formula	$C_{62}H_{48}N_4O_2$
Formula weight	881.04
Temperature/K	301.95(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	26.9099(11)
b/Å	9.5273(3)
c/Å	19.2556(8)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	108.442(4)
$\gamma/^{\circ}$	90
Volume/Å ³	4683.2(3)
Z	4
$\rho_{calc}g/cm^3$	1.250
µ/mm ⁻¹	0.076
F(000)	1856.0
Crystal size/mm ³	$0.12 \times 0.07 \times 0.05$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.234 to 62.18
Index ranges	$-33 \le h \le 30, -13 \le k \le 11, -23 \le l \le 24$
Reflections collected	45770
Independent reflections	11907 [$R_{int} = 0.0415$, $R_{sigma} = 0.0425$]

 Table S3 Crystal data and structure refinement for 2NC CCDC: 2107082

Data/restraints/parameters	11907/30/615
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0553, wR_2 = 0.1524$
Final R indexes [all data]	$R_1 = 0.1073, wR_2 = 0.1828$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.26

 Table S4 Crystal data and structure refinement for 2CN CCDC: 2107078

Identification code	2CN
Empirical formula	$C_{62}H_{48}N_4O_2$
Formula weight	881.04
Temperature/K	302.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.3835(6)
b/Å	10.7250(6)
c/Å	24.4935(12)
α/°	77.553(4)
β/°	79.932(5)
γ/°	63.410(5)
Volume/Å ³	2372.2(2)
Z	2
$\rho_{calc}g/cm^3$	1.233
µ/mm ⁻¹	0.075
F(000)	928.0
Crystal size/mm ³	$0.08\times 0.05\times 0.04$
Radiation	Mo Ka ($\lambda = 0.71073$)

2Θ range for data collection/°	3.42 to 62.012
Index ranges	$-14 \le h \le 13, -14 \le k \le 13, -33 \le l \le 30$
Reflections collected	29160
Independent reflections	11743 [$R_{int} = 0.0373$, $R_{sigma} = 0.0576$]
Data/restraints/parameters	11743/0/633
Goodness-of-fit on F ²	1.023
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0699, wR_2 = 0.1611$
Final R indexes [all data]	$R_1 = 0.1567, wR_2 = 0.1918$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.19

LD_1_3_autored
$C_{34}H_{26}N_2O_2S_2\\$
558.730
N/A
monoclinic
I2
7.3383(2)
6.1634(2)
60.9206(16)
90
93.020(2)
90
2751.54(14)
4

Table S5 Crystal data and structure refinement for 3NC CCDC: 2120445

$\rho_{calc}g/cm^3$	1.349
μ/mm^{-1}	2.031
F(000)	1173.9
Crystal size/mm ³	$0.09 \times 0.04 \times 0.01$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	5.82 to 154.92
Index ranges	$-9 \le h \le 8, -7 \le k \le 7, -74 \le l \le 75$
Reflections collected	14483
Independent reflections	5162 [$R_{int} = 0.0770, R_{sigma} = 0.0503$]
Data/restraints/parameters	5162/2/363
Goodness-of-fit on F ²	1.116
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0923, wR_2 = 0.2607$
Final R indexes [all data]	$R_1 = 0.1022, wR_2 = 0.2731$
Largest diff. peak/hole / e Å ⁻³	0.83/-0.46

Table S6 Crystal data and structure refinement for 3CN CCDC: 2107090

Identification code	3CN
Empirical formula	C ₁₇ H ₁₃ NOS
Formula weight	279.34
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	5.9514(7)
b/Å	16.012(3)
c/Å	16.264(4)
$\alpha/^{\circ}$	63.516(19)

β/°	82.231(14)
$\gamma/^{\circ}$	85.875(12)
Volume/Å ³	1374.4(5)
Z	4
$\rho_{calc}g/cm^3$	1.350
µ/mm ⁻¹	2.033
F(000)	584.0
Crystal size/mm ³	$0.17 \times 0.14 \times 0.02$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	10.434 to 133.17
Index ranges	$-7 \le h \le 4, -18 \le k \le 19, -18 \le l \le 19$
Reflections collected	7995
Independent reflections	4659 [$R_{int} = 0.0339, R_{sigma} = 0.0518$]
Data/restraints/parameters	4659/0/369
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0612, wR_2 = 0.1701$
Final R indexes [all data]	$R_1 = 0.0836, wR_2 = 0.2050$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.47

Table S7 Recovery study of CN to Al^{3+} in spiked water samples.

Sample	Al ³⁺ spiked (M)	Al ³⁺ recovered (M)	Recovery (%)	Standard error(%)	RSD	
	6.00×10 ⁻⁶	5.84×10-6	97.3	2.7	0.057	
Tap water	9.00×10 ⁻⁶	8.73×10^{-6}	97.0	3.0	0.066	
	1.20×10-5	1.22×10^{-5}	101.7	1.7	0.081	
	1.50×10^{-5}	1.51×10^{-5}	100.5	0.5	0.108	
	1.80×10^{-5}	1.78×10^{-5}	98.8	1.2	0.041	
	6.00×10 ⁻⁶	5.89×10 ⁻⁶	98.1	1.9	0.054	
	9.00×10 ⁻⁶	9.00×10 ⁻⁶	100.0	0	0.100	
Drinking water	1.20×10-5	1.22×10^{-6}	101.9	1.9	0.128	
	1.50×10-5	1.47×10^{-5}	98.0	2.0	0.048	
	1.80×10 ⁻⁵	1.79×10 ⁻⁵	99.5	0.8	0.110	
	6.00×10^{-6}	6.02×10^{-6}	100.4	0.4	0.075	
	9.00×10 ⁻⁶	8.88×10^{-6}	98.7	1.3	0.060	
River water	1.20×10-5	1.17×10 ⁻⁶	97.8	2.2	0.027	
	1.50×10-5	1.47×10^{-5}	98.0	2.0	0.106	
	1.80×10-5	1.76×10^{-5}	97.8	2.2	0.033	

Table S8 Recovery study of 1CN to Zn^{2+} in spiked water samples.

Sample	Zn ²⁺ spiked (M)	Zn ²⁺ recovered (M)	Recovery (%)	Standard error(%)	RSD
Tap water	3.00×10-6	2.93×10-6	97.6	2.4	0.070
	6.00×10 ⁻⁶	6.15×10 ⁻⁶	102.5	2.5	0.058
	9.00×10 ⁻⁶	8.57×10 ⁻⁶	98.7	1.3	0.090
	1.20×10 ⁻⁵	1.14×10 ⁻⁵	97.6	2.4	0.081
	1.50×10-5	1.55×10 ⁻⁵	103.1	3.1	0.106
Drinking water	3.00×10-6	3.12×10 ⁻⁶	102.5	2.5	0.055
	6.00×10 ⁻⁶	6.10×10 ⁻⁶	101.6	1.6	0.067
	9.00×10 ⁻⁶	9.09×10 ⁻⁶	101.0	1.0	0.031
	1.20×10-5	1.22×10 ⁻⁵	102.0	2.0	0.093
	1.50×10 ⁻⁵	1.54×10 ⁻⁵	102.5	2.5	0.042
River water	3.00×10 ⁻⁶	3.05×10 ⁻⁶	101.5	1.5	0.046
	6.00×10 ⁻⁶	6.04×10 ⁻⁶	100.6	0.6	0.064
	9.00×10 ⁻⁶	8.82×10 ⁻⁶	98.0	2.0	0.054
	1.20×10-5	1.19×10 ⁻⁵	98.9	1.1	0.116
	1.50×10-5	1.49×10 ⁻⁵	99.7	0.3	0.079

4. ¹H NMR and ¹³C NMR

Fig. S21 ¹H NMR spectrum of **1CN** in DMSO-*d*6.

Fig. S22 ¹H NMR spectrum of **2NC** in DMSO-*d*6.

Fig. S24 ¹H NMR spectrum of **3NC** in DMSO-*d*6.

Fig. S25 ¹H NMR spectrum of **3CN** in acetone-*d*6.

Fig. S26 ¹³C NMR spectrum of **1NC** in CDCl₃.

Fig. S27 ¹³C NMR spectrum of **1CN** in CDCl₃.

Fig. S29 ¹³C NMR spectrum of **2CN** in CDCl₃.

Fig. S31 ¹³C NMR spectrum of **3CN** in CDCl₃.

Fig. S32 ¹H NMR spectrum of **RC** in DMSO-*d6*.

