Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Largely Enhanced Energy Density of BOPP-OBT@CPP-BOPP Sandwich-

structured Dielectric Composites

Yi Gong^a, Dong Chen^a, Junjin Duan^a, Xianhong Zhang^a, Yuhong Ma^{*a}, Changwen

Zhao^a, Wantai Yang*^a

^a Beijing Engineering Research Center of Syntheses and Applications of Waterborne

Polymers, College of Materials Science and Engineering, Beijing University of

Chemical Technology, Beijing 100029, China.

E-mail: <u>mayh@mail.buct.edu.cn</u>; <u>yangwt@mail.buct.edu.cn</u>

Supplementary information

Fig. S1. The cross-sectional SEM images of BT, BTOH, and OBT in CPP with different sonication time.

	Si	С	Ti	0	Ba
Atomic%	5.87	54.86	6.08	29.07	4.12

Table S1. Atomic Ratio of OBT Detected by XPS.

Fig. S2. (a) Photograph of OBT@CPP coating (50 wt% OBT) after setting for more than a month showed a very good anti-sedimentation performance, (b) Peeling process of BCB composite films and (c) SEM image of the surface morphology of tensile fracture of the composite film also showed a good dispersion of OBT nanoparticles in the CPP matrix.

Fig. S3. Frequency dependences of (a) dielectric constant and (b) dielectric loss for the middle layer CPP. Compared to CPP, the OBT@CPP (1-5 represents the 10-50 wt% of OBT in CPP, separately) showed stepwise growth, and the dielectric loss maintained as low as 2%. The excellent dielectric properties of the middle layer composite are the key to improving the dielectric properties of sandwich-structured films.

Fig. S4. Maximum polarization (P_m) and remnant polarization (P_r) of BOPP and BCB composite films. The higher value of maximum polarization is, the higher value of remnant polarization is, and the overall discharged energy density and charge-discharge efficiency is determined by difference of P_m and P_r .

Table S2. P_m and P_r of BOPP and BCB composite films at 450 MV/m.

	BOPP	BCB-10	BCB-20	BCB-30	BCB-40	BCB-50
$P_m(\mu C/cm^2)$	1.40	3.13	3.24	3.36	3.74	3.55
$P_r(\mu C/cm^2)$	0.13	0.27	0.29	0.28	0.38	0.35
(a) (v of the second state of the second stat	100 MV/m 150 MV/m 250 MV/m 300 MV/m 100 MV/m 450 MV/m Field (MV/m) 150 MV/m 150 MV/m 250 MV/m 300 MV/m 100 MV/m 450 MV/m	(b) 9 6 3 50 MV/i 350 MV 9 6 30 MV/i 350 MV 9 6 Ele (e) 12 9 6 50 M/i 200 MV 350 MV 4 9 6 50 MV/i 350 MV 4 9 6 6 6 6 6 6 6 7 6 6 6 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	m 100 MV/m 150 /m 250 MV/m 300 /m 400 MV/m 450 Ctric Field (MV/m) //m 100 MV/m 30 //m 250 MV/m 30 //m 400 MV/m 400	(C) MV/m MV/m MV/m MV/m MV/m MV/m MV/m S00 MV/m S00 MV/m	50 MV/m 100 MV/m 200 MV/m 250 MV/m 350 MV/m 400 MV/m Electric Field (N 50 MV/m 100 MV/ 200 MV/m 250 MV/ 350 MV/m 400 MV/	150 MV/m 300 MV/m 450 MV/m NV/m)
Electric Fie	ield (MV/m)	5 3 0 -3 -6 Ele	ectric Field (MV/r	n)	Electric Field (MV/m)

ig. S5. Current-electric field curves of (a) BOPP, (b) BCB-10, (c) BCB-20, (d) BCB-30,(e) BCB-40 and (f) BCB-50 composite films.