Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.

This journal is ^(C) The Royal Society of Chemistry 2022

Supplementary Information

Highly Efficient and Thermally Stable Broadband Near-Infrared Emitting

Fluoride Cs₂KGaF₆:Cr³⁺ for Multiple LED Applications

Zixuan Wu^a, Xinxin Han^{a,b*}, Juan Wang^a, Yayun Zhou^b, Ke Xing^a, Sheng Cao^a, Jialong Zhao^a, Bingsuo Zou^{a*} and Ruosheng Zeng^{a*}

 ^a School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
 ^b State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, China.

* Corresponding authors E-mails: xxhan@gxu.edu.cn (Xinxin Han); zoubs@gxu.edu.cn (Bingsuo Zou); zengrsh@guet.edu.cn (Ruosheng Zeng)

Theoretical concentration/mol%	Actual concentration/mol%
1%	1.08%
5%	4.81%
10%	10.89%
15%	16.02%
20%	21.12%

Table S1 The doping concentration of Cr^{3+} measured by ICP optical emission spectroscopy.

Cr ³⁺ content	atom	x	у	z	B _{iso}	Occ.
	Cs	0.25	0.25	0.25	1.97	1
	K	0.5	0.5	0.5	1.84	1
0%	Ga	0	0	0	1.07	1
	F	0.209981	0	0	2.21	1
	Cs	0.25	0.25	0.25	1.84	1
	К	0.5	0.5	0.5	2.14	1
1.08%	Ga	0	0	0	1.10(5)	0.9635
	F	0.213307	0	0	2.70	1
	Cr	0	0	0	0.95(5)	0.0365
	Cs	0.25	0.25	0.25	2.03	1
	К	0.5	0.5	0.5	1.42	1
4.81%	Ga	0	0	0	1.41(5)	0.9580
	F	0.210291	0	0	2.03	1
	Cr	0	0	0	0.92(5)	0.0420
	Cs	0.25	0.25	0.25	2.17	1
	К	0.5	0.5	0.5	1.58	1
10.89%	Ga	0	0	0	1.30(5)	0.9209
	F	0.231395	0	0	1.98	1
	Cr	0	0	0	0.77(5)	0.0791
	Cs	0.25	0.25	0.25	1.95	1
	К	0.5	0.5	0.5	1.49	1
16.02%	Ga	0	0	0	1.37(5)	0.9110
	F	0.213161	0	0	2.24	1
	Cr	0	0	0	0.87(5)	0.0890
21.12%	Cs	0.25	0.25	0.25	1.79	1
	К	0.5	0.5	0.5	1.81	1
	Ga	0	0	0	1.16	0.880(18
	F	0.214594	0	0	2.77	1
	Cr	0	0	0	0.83	0.120(18

Table S2 Atomic coordinates and isotropic displacement parameters (Å²) for Cs₂KGa₁. $_{x}F_{6}:xCr^{3+}$ (x=0-21.12%).

Cr ³⁺ content	Space group	<i>a</i> (Å)	<i>α=β=γ</i> (°)	Z	V (Å ³)	$R_{ m wp}/R_{ m p}/\chi^2$
0%		8.989610(20)			726.4781(28)	7.07%/5.39%/3.150
1.08%		8.988504(20)			726.2101(28)	8.17%/5.78%/4.125
4.81%	Fm3m	8.986817(19)	00	4	725.8013(27)	7.54%/5.50%/3.467
10.89%		8.985558(25)	90		725.4961(25)	7.57%/5.50%/3.448
16.02%		8.985383(18)			725.4539(25)	7.62%/5.42%/3.568
21.12%		8.985026(20)			725.3674(28)	7.71%/5.49%/3.552

Table S3 Rietveld refinement data for $Cs_2KGa_{1-x}F_6:xCr^{3+}$ (*x*=0-21.12%).

Fig. S1 (a) Band structure and (b) TDOS and PDOS of $Cs_2KGaF_6:Cr^{3+}$.

Fig. S2 DRS of Cs_2KGaF_6 and Cs_2KGaF_6 :10.89% Cr^{3+} . The inset shows the band gap calculation of Cs_2KGaF_6 .

Cr ³⁺ content	A ₁	$ au_1$	A ₂	$ au_2$	τ
1.08%	0.44648	0.26975	0.44648	0.26975	0.26975
4.81%	0.43527	0.26383	0.43527	0.26383	0.26383
10.89%	0.83826	0.26104	0.09991	0.05308	0.25612
16.02%	0.63487	0.28074	0.29694	0.09754	0.25513
21.12%	0.66835	0.26531	0.31266	0.07371	0.24328

Table S4 The decay curves fitting data of $Cs_2KGa_{1-x}F_6:xCr^{3+}$ (*x*=0-21.12%).

Fig. S3 (a) Excitation and emission spectra of BaSO₄ and phosphor sample $Cs_2KGaF_6:10.89\%Cr^{3+}$. (b) Emission spectrum of $Cs_2KGaF_6:10.89\%Cr^{3+}$. The S1 and S2 in Fig. S2b present the emission spectrum parts of 600-850 nm and 850-1000 nm, respectively. The integrated emission intensity ratios of S1 and S2 to that of (S1+S2) are calculated to be about 81.46% and 18.54%, respectively. Meanwhile, the IQE of S1 is determined as 73.48%, thus the IQE of the whole NIR emission of the sample can be calculate as 73.48%/81.54% \approx 90.2%.

Phosphor	λ _{ex} (nm)	λ _{em} (nm)	FWHM (nm)	I _{150°C} (%)	IQE (%)	Input power (mW)	NIR output power (mW)@photoelect ric efficiency	Ref.
BaMgAl ₁₀ O ₁₇ :Cr ³⁺	398	762	92.6	63	94	-	3.4@-	1
InBO ₃ :Cr ³⁺	480	820	138	50	46.3	360	37.5@10.42%	2
LiScP ₂ O ₇ :Cr ³⁺	470	880	170	20	38	300	19@7%	3
LiScP ₂ O ₇ :Cr ³⁺ ,Yb ³⁺	470	880	210	60	74	300	36@12%	3
$YAl_{3}(BO_{3})_{4}:Cr^{3+},Yb^{3+}$	450	-	-	80	-	300	26@8.6%	4
$Ca_2LuZr_2Al_3O_{12}{:}Cr^{3+}$	460	754	117	60	69	60	2.448@4.1%	5
NaInGe ₂ O ₆ :Cr ³⁺	480	900	175	25	34	-	25@4.85%	6
$Ca_9Ga(PO_4)_7$: Cr^{3+}	440	735	-	68.5	55.7	-	-	7
$CaSc_{1-x}Al_{1+x}SiO_6$: Cr^{3+}	460	950	205	~54	30	-	-	8
$Y_2CaAl_4SiO_{12}{:}Cr^{3+}$	440	760	160	90.6	90.1	300	62.6@21.2%	8
$Ca_{3-x}Lu_xGa_{2+x}Ge_{3-x}O_{12}$: Cr^{3+}	460	803	267	90	-	300	27.1@16.3%	10
ScBO ₃ :Cr ³⁺	450	800	120	51	65	371	26@7%	11
$Ca_{3}Sc_{2}Si_{3}O_{12}{:}Cr^{3+}$	460	770	110	97.4	92.3	2892	109.9@3.8%	12
$K_3GaF_6:Cr^{3+}$	442	750	-	-	28	1050	8@<1%	13
$K_3ScF_6:Cr^{3+}$	432	770	120	87.3	71.7	350	32.56564@9.315	14
K ₃ AlF ₆ :Cr ³⁺	430	763	112	-	31.4	1050	5.5@<1%	15
$K_2NaScF_6:Cr^{3+}$	435	765	100	89.6	74	1094	159.72@14.6%	16
$ScF_3:Cr^{3+}$	468	853	140	85.5	45	110	3.51@3.19%	17
$Na_3ScF_6:Cr^{3+}$	436	774	108	30	91.5	-	699.8@15.46%	18
						52.68	11.26@21.37%	
Cs2KGaF6:Cr3+	439	782	110	88.7	90.2	277.5	61.18@22.05%	This
						972.8	183.81@18.89%	work

Table S5 PL properties of some Cr³⁺-activated phosphors and photoelectric properties of the fabricated NIR pc-LEDs.

Fig. S4 Driven current dependent integrated NIR intensity.

Current (mA)	Input electrical power (mW)	NIR output power (mW)	Photoelectric conversion efficiency (%)
20	52.68	11.26	21.37
40	107.20	23.84	22.24
60	160.19	36.28	22.64
80	217.17	48.45	22.31
100	277.50	61.18	22.05
120	336.12	73.44	21.85
160	456.64	98.01	21.46
200	580.00	117.63	20.28
240	707.76	134.71	19.03
280	838.32	164.39	19.61
320	972.80	183.808	18.89

Table S6 Some photoelectric parameters of the fabricated NIR pc-LED under various driven

 currents.

References

- 1 L. You, R. Tian, T. Zhou and R. Xie, Chem. Eng. J., 2021, 417, 129224.
- 2 Z. Sun, Q. Ning, W. Zhou, J. Luo, P. Chen, L. Zhou, Q. Pang and X. Zhang, Ceram. Int., 2021, 47, 13598-13603.
- 3 L. Yao, Q. Shao, S. Han, C. Liang, J. He and J. Jiang, Chem. Mater., 2020, 32, 2430-2439.
- 4 Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, Z. Li, Y. Dong and J. Jiang, Opt. Lett., 2018, 43, 5251-5254.
- 5 L. Zhang, S. Zhang, Z. Hao, X. Zhang, G. Pan, Y. Luo, H. Wu and J. Zhang, J. Mater. Chem. C, 2018, 6, 4967-4976.
- 6 W. Zhou, J. Luo, J. Fan, H. Pan, S. Zeng, L. Zhou, Q. Pang and X. Zhang, Ceram. Int., 2021, 47, 25343-25349.
- 7 F. Zhao, Z. Song and Q. Liu, Int. J. Min. Met. and Mater., 2022.
- 8 G. Liu, M. S. Molokeev and Z. Xia, Chem. Mater., 2022, 34, 1376-1384.
- 9 G. Zheng, W. Xiao, J. Wu, X. Liu, H. Masai and J. Qiu, Adv. Sci., 2022, 9, 2105713.
- 10 T. Lang, M. Cai, S. Fang, T. Han, S. He, Q. Wang, G. Ge, J. Wang, C. Guo, L. Peng, S. Cao, B. Liu, V. I. Korepanov, A. N. Yakovlev and J. Qiu, *Adv. Opt. Mater.*, 2022, **10**, 2101633.
- 11 Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang and J. Jiang, RSC Adv., 2018, 8, 12035-12042.
- 12 Z. Jia, C. Yuan, Y. Liu, X. Wang, P. Sun, L. Wang, H. Jiang and J. Jiang, Light sci. appl., 2020, 9, 86.
- 13 C. Lee, Z. Bao, M. Fang, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S. M. Kaczmarek, M. G. Brik, Y. Tsai, T. Tsai and R. Liu, *Inorg. Chem.*, 2020, **59**, 376-385.
- 14 H. Yu, J. Chen, R. Mi, J. Yang and Y. Liu, *Chem. Eng. J.*, 2021, **417**, 129271.
- 15 Q. Song, Z. Liu, H. Jiang, Z. Luo, P. Sun, G. Liu, Y. Liu, H. Jiang and J. Jiang, J. Am. Ceram. Soc., 2021, 104, 5235-5243.
- 16 E. Song, H. Ming, Y. Zhou, F. He, J. Wu, Z. Xia and Q. Zhang, Laser Photonics Rev., 2021, 15, 2000410.
- 17 Q. Lin, Q. Wang, M. Liao, M. Xiong, X. Feng, X. Zhang, H. Dong, D. Zhu, F. Wu and Z. Mu, ACS Appl. Mater. Inter., 2021, 13, 18274-18282.
- 18 F. He, E. Song, Y. Zhou, H. Ming, Z. Chen, J. Wu, P. Shao, X. Yang, Z. Xia and Q. Zhang, *Adv. Funct. Mater.*, 2021, **31**, 2103743.