Supporting information

The morphology-dependent lattice stability investigation in ZnS nanostructures by high-pressure XAFS studies

Qing Dong,^{ab} Shujia Li,^{bc} Ran Liu,^b Bo Liu,^b Quanjun Li,^{*b} Jaeyong Kim,^{*a} Bingbing Liu^b

^aInstitue for High Pressure, Department of Physics, Hanyang University, Seoul 04763, Republic of Korea ^bState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China

^cResearch Institute for Basic Sciences, School of Earth & Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea

Figure S1. Extracted k^2 -weighted XAFS spectra, $k^2\chi(k)$, for ZnS (c) nanorods and (d)nanoparticles at elevated pressures. The spectra in dashed lines represent the start of transition.Thespectraareverticallyshifted.

Figure S2. Comparison between the experimental EXAFS spectra and the best-fits corresponding to a single-distance shell at 28.8 GPa for ZnS nanorods. (a) and (b) show the extracted $k^2\chi(\mathbf{k})$ signal the back-transformed $k^2\chi(\mathbf{q})$ signal. (c) is the comparison in the *R* space.

Figure S3. Comparison between the experimental EXAFS spectra and the best-fits corresponding to a single-distance shell at 30.2 GPa for ZnS nanoparticles. (a) and (b) show the extracted $k^2\chi(\mathbf{k})$ signal the back-transformed $k^2\chi(\mathbf{q})$ signal. (c) is the comparison in the *R* space.

P (GPa)	N	Zn-S distance (Å)	σ^2 (Å ²)	<i>S</i> ₀ ²	$\Delta E_{\theta}(eV)$	R-factor
0	4	2.337±0.008	0.0066±0.0011	1.00	3.459	0.0068
1.1	4	2.336±0.012	0.0054±0.0014	0.91	4.426	0.0095
3.3	4	2.325±0.015	0.0069 ± 0.0023	1.05	4.309	0.0108
5.3	4	2.317±0.016	0.0077 ± 0.0026	1.08	3.303	0.0168
9.5	4	2.300±0.012	0.0060 ± 0.0018	0.98	3.677	0.0107
11.8	4	2.278±0.015	0.0025±0.0021	0.79	2.606	0.0181
14.3	4	2.276±0.011	0.0060 ± 0.0017	1.01	3.818	0.0067
16.1	4	2.261±0.012	0.0060 ± 0.0018	0.99	1.860	0.0065
17.5	4	2.266±0.008	0.0054 ± 0.0014	0.92	3.216	0.0035
	4	2.241±0.019	0.0076 ± 0.0030	0.93	2.413	0.0234
19.6	5	2.241±0.019	0.0078 ± 0.0030	0.81	1.008	0.0235
	6	2.242±0.019	0.0078 ± 0.0030	0.73	1.037	0.0235
20.7	4	2.285±0.022	$0.0138 {\pm} 0.0037$	1.13	1.108	0.0215
	5	2.286±0.022	0.0139 ± 0.0037	0.92	1.577	0.0215
	6	2.286±0.020	0.0139 ± 0.0036	0.81	1.577	0.0215
	4	2.327±0.031	0.0176±0.0055	1.35	1.366	0.0392
21.9	5	2.321±0.022	0.0180 ± 0.0037	1.12	1.262	0.0200
	6	2.321±0.023	0.0181 ± 0.0037	0.94	1.271	0.0200
24.6	6	2.374±0.016	0.0123±0.0023	0.91	3.341	0.0138
26. 7	6	2.369±0.017	0.0109 ± 0.0027	0.91	2.707	0.0140
28.8	6	2.361±0.010	0.0104±0.0015	0.96	3.456	0.0040

Table S1. Fitting results of the first shell Zn-S distance, σ^2 , S_0^2 , ΔE_0 , and *R*-factor at selected pressures for ZnS nanorods.

P (GPa)	N	Zn-S distance (Å)	σ^2 (Å ²)	<i>S</i> ₀ ²	$\Delta E_{\theta}(eV)$	R-factor
0	4	2.339±0.005	$0.0061 {\pm} 0.0007$	0.96	4.027	0.0043
2.2	4	2.326±0.014	0.0071±0.0021	0.98	3.001	0.0119
3.9	4	2.313±0.012	0.0039±0.0018	0.82	3.111	0.0167
6.1	4	2.284±0.010	0.0054±0.0016	0.92	2.198	0.0080
8.3	4	2.277±0.012	0.0058±0.0018	0.93	1.860	0.0117
10.5	4	2.269±0.013	0.0056±0.0019	0.93	2.255	0.0122
	4	2.273±0.020	0.0084±0.0025	1.01	3.219	0.0170
11.9	5	2.269±0.022	0.0102 ± 0.0042	0.88	3.548	0.0242
	6	2.267±0.025	0.0113±0.0046	0.73	3.668	0.0258
	4	2.250±0.009	0.0032±0.0013	0.79	1.696	0.0085
13.6	5	2.250±0.009	0.0033±0.0012	0.71	2.145	0.0084
	6	2.251±0.008	$0.0033 {\pm} 0.0012$	0.63	2.145	0.0083
	4	2.276±0.013	0.0076 ± 0.0022	0.87	3.615	0.0069
15.6	5	2.277±0.014	0.0077 ± 0.0022	0.76	3.248	0.0070
	6	2.277±0.014	0.0077 ± 0.0022	0.68	3.064	0.0071
17.0	4	2.269±0.017	$0.0104{\pm}0.0025$	0.93	1.358	0.0145
	5	2.266±0.013	0.0105 ± 0.0020	0.78	1.456	0.0119
	6	2.266±0.013	0.0105±0.0019	0.65	1.577	0.0121
18.7	4	2.344±0.017	0.0112±0.0029	0.95	2.842	0.0252
	5	2.319±0.018	$0.0112{\pm}0.0030$	0.77	3.505	0.0246
	6	2.320±0.018	$0.0113 {\pm} 0.0030$	0.64	3.477	0.0193
20.2	6	2.324±0.017	0.0102±0.0026	0.74	2.672	0.0189
22.2	6	2.310±0.012	0.0128±0.0019	0.78	0.576	0.0057
23.9	6	2.317±0.013	0.0102±0.0021	0.69	1.657	0.0098
25.6	6	2.309±0.016	0.0159±0.0010	1.00	0.610	0.0110
27.9	6	2.313±0.014	0.0095±0.0022	0.74	2.754	0.0107
30.2	6	2.299±0.014	0.0117±0.0022	0.80	1.024	0.0079

Table S2. Fitting results of the first shell Zn-S distance, σ^2 , S_0^2 , ΔE_0 , and *R*-factor at selected pressures for ZnS nanoparticles.