Supporting Information for

Penta-BCP Sheet with Strong Piezoelectricity and a Record High Positive

Poisson's Ratio

Changsheng Hou, ${ }^{\dagger}$ Yiheng Shen, ${ }^{\dagger}$ Wei Sun, ${ }^{\dagger}$ Yanyan Chen, ${ }^{\dagger}$ Dongyuan Ni, ${ }^{\dagger}$ and Qian Wang* ${ }^{\dagger}$
\dagger School of Materials Science and Engineering, CAPT, Peking University, Beijing 100871, China

The coordinates and lattice parameters of the optimized geometry for penta-BCP in the VASP-POSCAR format.

```
Penta-BCP
    1.00000000000000
\begin{tabular}{rrr}
3.7181999683000000 & 0.0000000000000000 & 0.0000000000000000 \\
0.0000000000000000 & 3.6875998974000002 & 0.0000000000000000 \\
0.0000000000000000 & 0.000000000000000 & 21.0799007415999995
\end{tabular}
    C B
    2 2 2
Direct
    0.2275573220106466 0.0084910296134737 0.4927373522990095
    0.7724426610073394 0.5084910294782858 0.5072626482250584
    0.4615985569580090 0.6860329068473163 0.4389086878008186
    0.5384014259841834 0.1860329069810689 0.5610913115137066
    0.1207179431704049 0.3611560725044214 0.4737279732646300
    0.8792820398694303 0.8611560725754330
```


Fig. S1. Potential energy fluctuation with time during the AIMD simulation at (a) 300 K, (b) 600 K , (c) 900 K , and (d) 1200 K . The insets show the configuration of pentaBCP at the end of each simulation. The pink, gray, and purple spheres represent B, C, and P atoms, respectively.

Fig. S2. Gibbs energy of (a) penta-BCP, and (b) diamond under different temperatures.
(a)

(b)

$$
\Delta x_{1}>0, \Delta y_{1}<0
$$

(c)

$$
\Delta x_{2}<0, \Delta y_{2}>0
$$

Fig. S3. (a) The length of the tetrahedral along the axial directions (x and y), and the bond angles $\theta\left(\mathrm{B}_{1}-\mathrm{C}-\mathrm{P}_{1}\right)$ and $\theta\left(\mathrm{B}_{2}-\mathrm{C}-\mathrm{P}_{2}\right)$ in the equilibrium state. (b) Schematic of the changes of the length (Δx_{1} and Δy_{1}) under tensile strain along the [100] direction, and (c) that (Δx_{2} and Δy_{2}) along the [010] direction. The pink, gray, and purple spheres represent B, C, and P atoms, respectively.

Fig. S4. (a, b) Phonon dispersion along the [100] and [010] direction of the penta-BCP under 10% uniaxial strain, respectively.

Table S1 Spontaneous polarization $P_{s}\left(\right.$ in $10^{-10} \mathrm{C} / \mathrm{m}$) of penta-BCP with $2 \%, 4 \%, 6 \%$, 8%, and 10% uniaxial tensile strains along the [100] or [010] directions.

Strain (\%)	$[100]$	$[010]$
2%	4.56	4.78
4%	4.47	4.89
6%	4.37	5.00
8%	4.27	5.08
10%	4.17	5.16

