Electronic Supplementary Materialy (ESI) for Jesupal of Materials Superior Supplementary C. This journal is © The Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry 2022

Supplementary Materials for

Copper Halide Anion Engineering for p-channel Electrolyte-Gated Transistors with Superior Operational Reliability

Da In Lee^a, Min Su Kim^a, Kyung Gook Cho^a, Kihyon Hong^{*b}, and Keun Hyung Lee^{*a,c}

^aDepartment of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea

^bDepartment of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea

^cEducation and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, Republic of Korea

Email: khong@cnu.ac.kr (K. Hong), kh.lee@inha.ac.kr (K. H. Lee)

Figure S1. (a) Br 3d and (b) I 3d XPS spectra of CuI:Br composite semiconductors with Br concentrations ranging from 0 to 50 mol%.

Figure S2. Representative (a) $I_{\rm D}$ - $V_{\rm D}$ output and (b) $I_{\rm D}$ - $V_{\rm G}$ transfer curves collected from the EGT using the undoped pristine CuI semiconductor.

Figure S3. Representative I_D - V_D output and I_D - V_G transfer curves collected from the CuI:Br EGTs with Br doping concentrations of (a) 10 mol%, (b) 30 mol%, (c) 40 mol%, and (d) 50 mol%.

Figure S4. I_D - V_G transfer curves collected in 400 successive operation cycles at V_D =-0.1 V from the EGTs with Br doping concentrations of (a) 10 mol%, (b) 30 mol%, (c) 40 mol%, and (d) 50 mol%.

Figure S5. Normalized channel current $(I_{D,t}/I_{D,0})$ obtained from the EGTs with pristine CuI (0 mol%) and 20 mol% Br-doped CuI semiconductors over a period of 5000 s at constant $V_G = V_D = -0.2$ V in ambient air atmosphere.