Electronic Supplementary Information

Reliable high work-function molybdenum dioxide synthesis via template-effect-utilizing atomic layer deposition for next-generation electrode application

Ye Won Kim,¹ Ae Jin Lee,¹ Dong Hee Han,¹ Dae Cheol Lee,¹ Ji Hyeon Hwang,¹ Youngjin *Kim,¹ Songyi Moon,² Taewon Youn,² Minyung Lee,² and Woojin Jeon¹**

¹Department of Advanced Materials Engineering for Information and Electronics, and Integrated Education Program for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin, Gyeonggi 17104, Korea

²SK Hynix, Inc., Icheon, Gyeonggi 17336, Korea

KEYWORDS. Molybdenum dioxide, atomic layer deposition, dynamic random-access memory, metal–insulator–metal capacitor, electrode

Electrical characteristics of deposited MoO² thin-film electrodes

The electrical characteristics of the deposited MoO_x thin films were evaluated to apply MoO_x as an electrode material. The resistivities of the Mo_{x} films deposited using O_{3} on the TiN substrate were investigated for various film thicknesses (**Figure S7a**). In the MoO*^x* films up to 7.5 nm thick, wherein the crystal structure consisted of only the original MoO₂ phase, the resistivity was 1.3×10^{-3} Ω ·cm. The increased resistivity of the 10-nm-thick MoO_x thin film was attributed to crystallized-MoO₃-induced film degradation because crystallized $MoO₃$ is an electrical insulator. The surface morphology was examined using atomic force microscopy (AFM) (Figure S7b). The root-mean-square roughness (R_{rms}) of all the samples was less than 1.98 nm without any extrusion, which can induce severe leakage current degradation in MIM capacitors. These results show that MoO_x deposited using $O₃$ on the TiN substrate exhibited electrical properties comparable to those of pure TiN as an alternative electrode material for application to MIM capacitors. However, MoO*^x* thin films are not just electrically comparable to TiN. As an MIM capacitor electrode, a higher-work-function conductor must also be favorable to suppress leakage current conduction. The MIM capacitor fabricated using the ALD TiN electrode exhibited a work function of 4.2 eV. However, the MoO*^x* /TiN work function was considerably higher (5.5 eV, Figure 5c), which is the highest work function among all the ALD electrode materials (Table I). Moreover, even the 3.5-nm-thick ALD $MoO₂$ film exhibited a work function as high as 5.4 eV.

Figure S1. Schematic of the fabricated metal-insulator-metal structure.

Figure S2. Thicknesses of MoO*^x* films deposited at different substrate temperatures.

Figure S3. Growth per cycle plotted as functions of (a) $Mo(CO)$ ₆ feeding time and (b) O_3 feeding time. (c) Thickness of deposited MoO*^x* thin films plotted as functions of number of cycles for various process conditions and substrates.

Figure S4. XPS Mo 3*d* spectra of (a) $Mo(CO)_6 + O_3$ and (b) $Mo(CO)_6 + H_2O$ thin films deposited on TiN and (c) $Mo(CO)_{6}+O_{3}$ and (d) $Mo(CO)_{6}+H_{2}O$ thin films deposited on SiO_{2} .

Figure S5. Mo 3d XPS spectra of (a) 1.2-, (b) 3.6-, (c) 4.1-, (d) 8.0-, and (e) 12.4-nm-thick MoO₂ thin films.

Figure S6. (a) C–V and corresponding (b) J–V curves for 16-nm-thick TiO₂ thin films deposited on MoO₂ and TiN substrates.

Figure S7. (a) Resistivity of MoO₂ thin films deposited at various thicknesses. (b) AFM image and R_{rms} of 4.5-nm-thick $MoO₂$ thin film.