Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry C

Electronic Supplementary Information (ESI)

Rational design of orange-red iridium(III) complexes by isomer engineering strategy for improved performance of white organic light-emitting diodes

Yi-Ping Han,^a Jia-Ming Zhang,^b Ying-Chen Duan,^a Li-Li Wen,^{*a} Guan-Yu Ding,^a Kui-Zhan Shao,^c Guo-Gang Shan,^{*c} Wen-Fa Xie^{*b} and Zhong-Min Su^{*a, c}

^a Jilin Provincial science and technology innovation center of optical materials and chemistry, School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China

E-mail: wll@cust.edu.cn (L. L. Wen); zmsu@nenu.edu.cn (Z. M. Su)

^b State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China

Tel: +86-13844907598, E-mail: xiewf@jlu.edu.cn (W. F. Xie)

^c Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China, E-mail:shangg187@nenu.edu.cn (G. G. Shan)

List of Contents for Supplementary Information:

- 1. Fig. S1 The synthesized process of ancillary ligand and designed iridium(III) complexes.
- 2. Fig. S2 ¹H NMR spectrum of auxiliary ligand Hpbi.
- 3. Fig. S3 ¹H NMR spectrum of complex Ir(pq)₂pbi.
- 4. Fig. S4 ¹H NMR spectrum of complex Ir(piq)₂pbi.
- 5. Fig. S5 Mass spectrum of complex Ir(pq)₂pbi.
- 6. Fig. S6 Mass spectrum of complex Ir(piq)₂pbi.
- Table S1 Crystallographic summary of single crystals for Ir(pq)₂pbi and Ir(piq)₂pbi.
- 8. Table S2 Selected bond lengths and angles for Ir(pq)₂pbi and Ir(piq)₂pbi.
- Fig. S7 The packing diagrams of complexes Ir(pq)₂pbi (left) and Ir(piq)₂pbi (right).
- 10. Fig. S8 Normalized PL spectra of I Ir(pq)₂pbi and Ir(piq)₂pbi in CH₂Cl₂ at 77 K.
- 11. Fig. S9 CV curves of complexes Ir(pq)₂pbi and Ir(piq)₂pbi in CH₂Cl₂.
- Table S3 Excitation energy and major electronic configuration for complexes Ir(pq)₂pbi and Ir(piq)₂pbi.
- 13. Fig. S10 TGA curves of complexes Ir(pq)₂pbi and Ir(piq)₂pbi.
- 14. Fig. S11 CIE coordinates of devices D1 and D2 at 6 V.
- 15. Fig. S12 (a)J-V-L curves, inset: EL spectra; (b)η_c-L, η_p-L and η_{ext}-L curves for device based ir(III) complexes Ir(pq)₂acac or Ir(piq)₂acac [The device structure is ITO/MoO₃ (3 nm)/TAPC (35 nm)/TCTA (5 nm)/26DCzPPy:Ir(pq)₂acac or Ir(piq)₂acac (20 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al].
- 16. Table S4 Summary of device performances of Ir(pq)₂acac and Ir(piq)₂acac.
- 17. Fig. S13 CIE coordinates of devices W1 and W2 at 6 V.
- 18. Fig. S14 EL spectra for W2.

Fig. S1 The synthesized process of ancillary ligand and designed iridium(III) complexes.

Fig. S2 ¹H NMR spectrum of auxiliary ligand Hpbi.

Fig. S4 ¹H NMR spectrum of complex Ir(piq)₂pbi.

Fig. S5 Mass spectrum of complex Ir(pq)₂pbi.

Fig. S6 Mass spectrum of complex Ir(piq)₂pbi.

. 11 1 1		C · 1	1 0	\mathbf{T}	1 • 1	T / •	`
vetallagranhu	o ummoru of	$f \alpha m \alpha \Delta \alpha$	ructale tor	riring	nhi and	r(n)0	().nh
vstanogradni	z summai v Oi	י סווצות כ	ι νδιαιδ τυτ		2 1111 anu		121717
 Jerniegruphi		B			2001 0000		1/40~~

	Ir(piq) ₂ pbi	Ir(pq)2pbi	
Empirical formula	$C_{42}H_{28}IrN_5$	C42H28IrN5	
Formula weight	795.90	794.89	
Temperature/K	173.0	173.0	
Crystal system	monoclinic	triclinic	
Space group	C2/c	<i>P</i> -1	
a/Å	38.4774(17)	15.8437(7)	
$b/{ m \AA}$	10.4809(5)	17.0679(7)	
$c/{ m \AA}$	19.2732(8)	17.3454(8)	

$lpha/^{\circ}$	90	75.672(2)	
$eta /^{\circ}$	116.6730(10)	70.044(2)	
γ/°	90	64.469(2)	
Volume/Å ³	6945.3(5)	3950.4(3)	
Ζ	8	4	
$ ho_{ m cal}(m g/cm^3)$	1.522	1.337	
μ (Cu K α)/mm ⁻¹	7.724	6.790	
F (000)	3144.0	1568.0	
Reflections collected	29612	68833	
Indonandant raflactions	5722 [$R_{int} = 0.0432, R_{sigma}$	$13021[R_{int} = 0.0853,$	
Independent reflections	= 0.0335]	$R_{sigma} = 0.0565$]	
Goodness-of-fit on F ²	1.080	1.066	
Final R indexes [1>-20 (1)]	$R_1 = 0.0269, wR_2 =$	$R_1 = 0.0558, wR_2 =$	
$\frac{1}{20} \left[1 - 20 \left(1\right)\right]$	0.0725	0.1424	
Final R indexes [all data]	$R_{\rm c} = 0.0277 \ wR_{\rm c} = 0.0731$	$R_1 = 0.0712, wR_2 =$	
r mai A muenes [an uata]	$R_1 = 0.0277, WR_2 = 0.0751$	0.1528	

 ${}^{a}R_{1} = \Sigma ||Fo| - |Fc| / \Sigma |Fo|; {}^{b}wR_{2} = |\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})| / \Sigma |w(F_{o}^{2})^{2}|^{1/2}$

	Ir(pq) ₂ pbi	Ir(pq) ₂ pbi
Selected bonds	Bond length (Å)	Bond length (Å)
Ir-C(1)	1.989(8)	1.997(3)
Ir-C(16)	1.959(9)	1.999(3)
Ir-N(1)	2.094(7)	2.039(3)
Ir-N(2)	2.079(7)	2.034(3)
Ir-N(3)	2.170(7)	2.122(3)
Ir-N(5)	2.194(6)	2.174(3)
Selected angles	(°)	(°)
C(1)-Ir-N(1)	79.8(3)	79.3(12)
C(16)-Ir-N(2)	79.8(3)	79.7(12)
N(3)-Ir-N(5)	74.8(2)	75.9(10)
N(1)-Ir-N(2)	171.0(3)	172.8(10)
C(1)-Ir-N(3)	169.7(3)	173.9(12)
C(16)-Ir-N(5)	172.8(3)	171.6(12)

Table S2 Selected bonds lengths and angles for Ir(pq)₂pbi and Ir(piq)₂pbi.

Fig. S7 The packing diagrams of complexes Ir(pq)₂pbi (left) and Ir(piq)₂pbi (right).

Fig. S8 Normalized PL spectra of I Ir(pq)₂pbi and Ir(piq)₂pbi in CH₂Cl₂ at 77 K.

Fig. S9 CV curves of complexes Ir(pq)₂pbi and Ir(piq)₂pbi in CH₂Cl₂.

	-						
Complex	λ_{cal} (nm)	λ_{Expt} (nm)	$E(\mathrm{eV})$	Configuration	Assignments	³ MLCT(%)	
Ir(pq)2pbi	545	565 2.28	2.28	H→L (45%)	³ MLCT/ ³ LLCT	18.61	
			2.20	H-3→L (38%)	³ MLCT/ ³ LC/ ³ LLCT		
Ir(piq)2pbi	651	594,	1.00	H→L (64%)	³ MLCT/ ³ LLCT	17.35	
		636	1.90	H-3→L (19%)	³ MLCT/ ³ LC/ ³ LLCT		

Table S3 Excitation energy and major electronic configuration for complexes

Ir(pq)₂pbi and Ir(piq)₂pbi.

"H" and "L" denote HOMO and LUMO, respectively.

Fig. S10 TGA curves of complexes Ir(pq)₂pbi and Ir(piq)₂pbi.

Fig. S11 CIE coordinates of devices D1 and D2 based on complexes Ir(pq)₂pbi and Ir(piq)₂pbi at 6 V.`

Fig. S12 (a)J-V-*L* curves, inset: EL spectra; (b) η_c -*L*, η_p -*L* and η_{ext} -*L* curves for devices based iridium(III) complexes Ir(pq)₂acac and Ir(piq)₂acac [The device structure is ITO/MoO₃ (3 nm)/TAPC (35 nm)/TCTA (5 nm)/26DCzPPy: Ir(pq)₂acac or Ir(piq)₂acac (20 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al].

Device	$V_{\text{turn-on}}^{a}$	L_{\max}	$\eta_{c}{}^{b}$	$\eta_{\mathrm{p}}{}^{b}$	b(0/2)	$CIE c (\mathbf{x}, \mathbf{y})$	
	(V)	(cd m ⁻²)	(cd A ⁻¹)	(lm W ⁻¹)	$\eta_{\rm ext}$ (70)	CIL (x, y)	
Ir(pq)2acac	3.6	56591	19.8/18.5	15.0/9.9	12.5/11.6	(0.62, 0.37)	
Ir(piq) ₂ acac	3.5	25729	9.3/8.0	7.2/3.9	13.6/11.6	(0.68, 0.31)	

Table S4 Summary of device performances of Ir(pq)₂acac and Ir(piq)₂acac.

^{*a*} Turn on the voltage at 1 cd m⁻²; ^{*b*} measured efficiency values in the order: maximum, then at 1000 cd m⁻²; ^{*c*} Measured at 6 V.

Fig. S13 CIE coordinates of devices W1 and W2 at 6 V.

Fig. S14 EL spectra for W2.