Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Low energy loss (0.42 eV) and efficiency over 15% enabled by nonfullerene acceptors containing N-

bis(trifluoromethyl)phenylbenzotriazole as core in binary solar cells

María Privado,^a Beatriz Donoso,^b Kanupriya Khandelwal,^c Rahul Singhal,^c Fernando G. Guijarro,^a Ángel Díaz-Ortíz,^b Pilar Prieto,^{*b} Pilar de la Cruz,^{*a} Ganesh D. Sharma,^{*c} Fernando Langa^{*a}

^a University of Castilla-La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, 45071-Toledo, Spain. e-mail: Fernando.Langa@uclm.es

^b Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies-IRICA, University of Castilla-La Mancha, 13071 Ciudad Real, Spain. e-mail: mariapilar.prieto@uclm.es

^c Department of Physics, The LNM Institute of Information Technology (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India. e-mail: gdsharma@lnmiit.ac.in

1. General Remarks.	2
2. Synthesis and characterization of TOCR1 and TOCR2	4
3. ¹ H NMR, ¹³ C NMR, FT-IR and MALDI-TOF spectra	
4. Thermogravimetric Analysis (TGA) of TOCR1 and TOCR2	
5. Absorption spectrum in solution	
6. Electrochemical Studies	
7. Theoretical calculations	
8. Photovoltaic studies	
9. XRD studies	

1. General Remarks.

Experimental conditions. Anhydrous solvents were dried by purification system Pure-Sov 400. Chromatographic purifications were performed using silica gel 60 Merk 230-400 mesh ASTM. Analytical thin-layer chromatography was performed using ALUGRAM ® SIL G/UV₂₅₄ silica gel 60. Nuclear magnetic resonance ¹H NMR and ¹³C NMR were performed using Bruker Innova 400 Hz. Chemical shifts (δ) values are denoted in ppm. Residual solvent peaks being used as the internal standard (CHCl₃, δ = 7.27 ppm; CD_2Cl_2 , $\delta = 5.32$ ppm). ¹³C NMR chemical shifts are reported relative to the solvent residual peaks (CDCl₃, δ = 77.00 ppm; CD₂Cl₂, δ = 54 ppm). MALDI-TOF spectra were obtained in VOYAGER DETM STR spectrometry, using Dithranol [1,8dihydroxy-9(10H)-anthracenone] matrix. Fourier transform infrared as spectrophotometer (FT-IR) Jasco FT/IR-6800 spectrometer was used ATR (Attenuated Total Reflection) method, in each case the most characteristic bands are indicated for each spectra were performed on Shimadzu UV compound. Absorption 3600 spectrophotometer. Solutions of different concentration were prepared in CH₂Cl₂, toluene, benzonitrile or THF spectroscopy grade, with absorbance between 0.2 and 0.5 using a 1 cm UV cuvette. Thermogravimetric analyses were performed using a TGA/DSC Linea Excellent instrument by Mettler-Toledo and collected under inert atmosphere of nitrogen with a scan rate of 10 °C min⁻¹. The weight changes were recorded as a function of temperature.

Electrochemical Measurements: Reduction (E_{red}) and oxidation potentials (E_{ox}) were measured by cyclic voltammetry with a potentiostat BAS CV50W in a conventional three-electrode cell equipped with a glassy carbon working electrode, a platinum wire counter electrode, and an Ag/AgNO₃ reference electrode at scan rate of 100 mV/s. The E_{red} and E_{ox} were expressed vs. Fc/Fc⁺ used as external reference. In each case, the measurements were done in a deaerated solution containing 1 mM of the sample compound in 0.1 M of (*n*-Bu)₄NClO₄ in CH₂Cl₂ (4:1) as an electrolyte solution.

Computational Details: Theoretical calculations were carried out within the density functional theory (DFT) framework by using the Gaussian 09, applying density functional theory at the B3LYP level. The basis set of 6-31G* was used in the calculations (Supercomputation Service of UCLM).

Device Fabrication and characterization

The solution processed organic solar cells were fabricated on the ITO coated glass substrate with structure ITO/PESOT:PSS/active layer (P1 or P2:TOCR1 or

TOCR2)/PFN/Al. The ITO coated glass substrates were cleaned in detergent, and subsequently ultra-sonicated in deionized water, acetone and isopropyl alcohol and dried in vacuum oven to remove all the traces of residues. The photovoltaic performance optimization process was started with identifying the donor to acceptor ratio (weight percentage, varying from 1:0.4 to 1:1.3) and after that solvent vapor annealing was applied to maximize the performance of the OSCs. The D-A conjugated polymers P1 and P2 were used as donor (D) and the total concentration of D:A blend mixture was 16 mg/mL in chloroform. The devices were fabricated by depositing PEDOT:PSS as hole transport layer having thickness of 35-40 nm. The active layer was deposited by spin coating (2500 rpm, 60 s) on the top of PEDOT:PSS layer under ambient conditions. For the solvent vapor annealing (SVA), the optimized (as cast 1:1.2 D/A wt ratio) was exposed to the THF vapours for 40s. A thin layer of PFN was spin coated on the top of the active layer from the methanol solution. The aluminium (Al) electrode was deposited onto the top of PFN layer via thermal evaporation at the pressure less than 10⁻⁵ Torr. The current-voltage characteristics of the OSCs were measured under illumination intensity of 100 mW/cm² (AM1.5 G) using a solar simulator and a Keithley 2400 source meter unit. The External quantum efficiency (EQE) measurements were performed using Bentham EQE system.

2. Synthesis and characterization of TOCR1 and TOCR2.

- Synthesis of 2:

A mixture of **1** (0.1 g, 0,2 mmol), tributyl(4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)stannane (0.29 g, 0.44 mmol), PdCl₂(PPh₃)₂ (0.0129 g, 0.018 mmol), LiCl (0.026 g, 0.61 mmol) and CH₃CN (1 mL) was irradiated under argon in a microwave reactor at 110 °C for 20 min. The solvent was removed under reduced pressure and the residue was purified by means of column chromatography on silica gel employing hexane as the eluent to give pure product 2 as a viscous purple syrup. ¹H-NMR (500 MHz, CDCl₃) δ /ppm: 8.97 (s, 2H), 8.02 (s, 1H), 7.99 (s, 2H), 7.69 (s, 2H), 7.25 (d, *J* = 4.9 Hz, 2H), 6.99 (d, *J*= 4.9 Hz, 2H), 1.96 – 1.89 (m, 8H), 1.24-1.07 (m, 32H), 0.8 (t, *J* = 7 Hz, 12H). ¹³C-NMR (125 MHz, CDCl₃) δ /ppm: 159.0, 143.4, 141.1, 139.0, 138.1, 136.5, 133.5, 133.2, 128.4, 125.8, 124.0, 123.3, 121.8, 121.5, 120.6, 118.6, 53.8, 37.8, 31.6, 29.7, 24.6, 22.6, 14.0. MS (MALDI-TOF) (m/z): calculated 1019.38 [M]⁺ for C₅₆H₆₃F₆N₃S₄; found 1020.38.

- Synthesis of 3:

Under argon atmosphere, 1,2-dichloroethane (9.3 mL, previously dried with anhydrous MgSO₄ for 30 minutes) was added to compound **2** (0.11 mmol, 116 mg). Subsequently, anhydrous DMF (0.66 mmol, 50 µL) and POCl₃ (0.66 mmol, 60 µL) were added. The reaction mixture was monitored by TLC turning purple after 12 hours at room temperature. Next, the reaction was quenched with a saturated sodium acetate solution, and it was stirred over 1 hour. At that time, the reaction turned pink. The crude was extracted with CH₂Cl₂ (3 x 40 mL), the organic phase was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The reaction crude was purified by column chromatography (silica gel, CH₂Cl₂/ethyl acetate 9:1). A reddish solid **2** was obtained (103 mg, 87%). ¹H-NMR (400 MHz, CDCl₃) δ /ppm: 9.88 (s, 2H), 8.95 (d, *J* = 1.6 Hz, 2H), 8.05 (s, 3H), 7.76 (s, 2H), 7.64 (s, 2H), 2.06 – 1.92 (m, 8H), 1.32 – 1.09 (m, 34H), 0.81 (t, *J* = 6.5 Hz, 12H). ¹³C-NMR (100 MHz, CDCl₃) δ /ppm: 182.60, 163.29, 158.70, 147.24, 144.06, 143.53, 143.17, 140.83, 137.05, 133.63, 133.29, 130.02, 124.32, 124.12, 122.60, 121.56, 121.41, 120.63, 54.22, 37.63, 31.56, 29.66, 24.74, 22.63, 13.99. MS (MALDI-TOF) (m/z): calculated 1075.37 [M]⁺ for C₅₈H₆₃F₆N₃O₂S₄; found 1075.39.

- Synthesis of TOCR1:

Under argon atmosphere, anhydrous DMF (8 mL) was added over compound **2** (0.05 mmol, 59 mg) and tetracyanoethylene (TCNE) (0.69 mmol, 89 mg). Subsequently, the reaction was heated to 120 °C and was quenched with H_2O after disappeared the starting

material. Then, the crude was extracted with CHCl₃ (3 x 20 mL), and the organic phase was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The reaction crude was purified by GPC in dichloromethane. A navy blue solid **TOCR1** was obtained after washing with MeOH (50 mg, 82 %). ¹H-NMR (400 MHz, CD₂Cl₂) δ /ppm: 9.01 (s, 2H), 8.13 (s, 1H), 8.11 (s, 2H), 7.95 (s, 2H), 7.89 (s, 2H), 2.07 (m, 8H), 1.40 – 0.97 (m, 32H), 0.81 (t, *J* = 6.9 Hz, 5H). ¹³C-NMR (100 MHz, CD₂Cl₂) δ /ppm: 167.66, 160.59, 154.61, 148.77, 142.99, 140.70, 137.26, 136.22, 133.51, 133.17, 132.18, 131.12, 125.04, 124.75, 124.21, 123.15, 121.78, 121.50, 120.90, 113.84, 113.48, 113.36, 75.98, 54.83, 37.71, 31.50, 29.48, 24.63, 22.57, 13.74. FT-IR (ATR) v/ cm⁻¹: 3077, 2926, 2854, 2212, 1474, 1331, 1276, 1135. MS (MALDI-TOF) (m/z): calculated 1221.38 [M]⁺ for C₆₆H₆₁F₆N₉O₂S₄; found 1221.29.

- Synthesis of TOCR2:

A catalytic amount of pyridine (0.5 mL) was added to a solution of compound **3** (0.09 mmol, 103 mg) and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (0.63 mmol, 145 mg) in CHCl₃ (7.5 mL), and the mixture was stirred under inert and anhydrous conditions at 65 °C. After monitoring by TLC, it was concentrated under reduced pressure after 2 hours of reaction. The reaction crude was purified by column chromatography (silica gel, 100% CHCl₃) and after washed with MeOH and *n*hexane. A dark blue solid **TOCR2** was obtained (85 mg, 63 %). ¹H-NMR (400 MHz, CDCl₃, 323 K) δ /ppm: 8.94 (s, 5H), 8.54 (s, 2H), 8.07 (s, 2H), 7.87 (s, 2H), 7.69 (s, 4H), 2.03 (m, 8H), 1.16 (m, 34H), 0.81 (t, 12H). FT-IR (ATR) v/ cm⁻¹: 3076, 2927, 2854, 2217, 1687, 1528, 1470, 1391, 1275, 1124. MS (MALDI-TOF) (m/z): calculated 1499.41 [M]⁺ for C₈₂H₆₇F₁₀N₇O₂S₄; found 1499.31.

3. ¹H NMR, ¹³C NMR, FT-IR and MALDI-TOF spectra.

Figure S2. ¹³C-NMR (125MHz, CDCl₃) spectrum of compound 2.

Figure S4. ¹³C-NMR (100MHz, CDCl₃) spectrum of compound 3.

Figure S5. MALDI-TOF MS spectrum of compound 3 (Matrix: Dithranol).

Figure S6. ¹H-NMR (400MHz, CD₂Cl₂) spectrum of TOCR1.

Figure S7. ¹³C-NMR (100MHz, CDCl₃) spectrum of compound TOCR1.

Figure S8. MALDI-TOF MS spectrum of TOCR1 (Matrix: Dithranol).

Figure S9. FT-IR (ATR) spectrum of TOCR1.

Figure S11. MALDI-TOF MS spectrum of TOCR2 (Matrix: Dithranol).

Figure S12. FT-IR (ATR) spectrum of TOCR2.

4. Thermogravimetric Analysis (TGA) of TOCR1 and TOCR2.

Figure S13. TGA of TOCR1.

Figure S14. TGA of TOCR2.

5. Absorption spectrum in solution

Figure S15. Absorption spectrum of TOCR1 (CH₂Cl₂, $3.7 \ge 10^{-6}$ M) and TOCR2 (CH₂Cl₂, $2.2 \ge 10^{-6}$ M).

Figure S16. Normalized absorption spectra of TOCR1 in CH_2Cl_2 (c: 3.68 x 10⁻⁶M), toluene (c: 3.06 x 10⁻⁶M) and benzonitrile (c: 4.55 x 10⁻⁶M).

Figure S17. Normalized absorption spectra of **TOCR2** in CH_2Cl_2 (c: 2.20 x 10⁻⁶M), toluene (c: 3.66 x 10⁻⁶M), benzonitrile (c: 8.79 x 10⁻⁶M) and tetrahydrofuran (c: 6.66 x 10⁻⁶M).

Figure S18 Absorption spectrum of TOCR1 in solution and in film.

Figure S19. Absorption spectrum of TOCR2 in solution and in film.

6. Electrochemical Studies

Figure S20. OSWV (oxidation side) of TOCR1.

Figure S21. OSWV (reduction side) of TOCR1.

Figure S22. OSWV (oxidation side) of TOCR2.

Figure S23. OSWV (reduction side) of TOCR2.

7. Theoretical calculations

Table S1. Energetic values of the most relevant conformations of the central frag	ment
in Hartrees and relative values in Kcal/mol calculated at the B3LYP/6-31G(d,p) l	evel.

Conformation			2,69 Å 2,36 Å
E (Hartrees)	-4528,061554	-4528,065188	-4528,068516
(Kcal/mol)	(2,7)	(0,42)	(0)

Table S2. Energetic values of the most relevant conformations of the compounds**TOCR1** and **TOCR2** in Hartrees and relative values in Kcal/mol calculated at theB3LYP/6-31G(d,p) level.

Compound		Conformations			
TOCR1					
E (Hartrees)	-5236.29892	-5236,299407	-5236,299875		
(Kcal/mol)	(0,6)	(0,29)	(0)		
Compound	Conformations				
TOCR2					
E (Hartrees) (Kcal/mol)	-6289,959277 (2,67)	-6289,96143 (1,32)	-6289,963536 (0)		

Table S3. Cartesian coordinates for optimized geometry of TOCR1.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.527921	-0.625805	-0.250229

2	6	0	-0.901660	-0.558870	-0.241480
3	6	0	-1.723626	-1.728184	-0.351427
4	6	0	-1.002189	-2.917430	-0.465672
5	6	0	0.403789	-2.983575	-0.470787
6	6	0	1.235274	-1.867616	-0.363220
7	7	0	1.006206	0.627224	-0.144931
8	7	0	-0.093800	1.376487	-0.078527
9	7	0	-1.259610	0.733156	-0.130380
10	6	0	-0.027025	2.791983	0.036240
11	6	0	1.216666	3.422977	0.031023
12	6	0	1.269816	4.810738	0.153588
13	6	0	0.103595	5,563309	0.281875
14	6	0	-1.131200	4.910894	0.279503
15	6	0	-1.208885	3.526865	0.157072
16	6	0	2.681252	-1.949224	-0.360277
17	6	0	-3.170711	-1.670776	-0.347282
18	16	0 0	-4,136413	-3,126301	-0.654340
19	<u>-</u> 0 6	õ	-5 594597	-2 216652	-0 471808
20	6	õ	-5 358766	-0 869205	-0 203402
20	6	0	-3 987880	-0.565683	-0.205402
21	6	0	-7 001075	-2 119856	-0.120505
22	6	0	-7 665748	-2.445050	-0.401001
23	0	0	-6 670593	-0.000377	-0.232312
24 25	16	0	9 067172	2 779/25	0.040300
25	10	0	-0.00/1/3	2 700269	-0.743495 0.707015
20	0	0	9.403737	-2.709200	0.497013
27	16	0	2 400505	-1.591372	0.239331
20	10	0	5.499505	-2.200407	-0.00200
29	6	0	5.039255	-2./35318	-0.442254
30 21	6	0	4.93/053	-1.359545	-0.245984
31	6	0	3.602/79	-0.919855	-0.189851
32	6	0	6.414426	-3.106696	-0.43/301
33	6	0	/.19/9/3	-1.963118	-0.232354
34	6	0	6.318354	-0./1/615	-0.088890
35	16	0	7.336561	-4.546984	-0.635885
36	6	0	8.561614	-2.251460	-0.25/230
37	6	0	2.605174	5.511067	0.087361
38	9	0	2.619588	6.625097	0.845081
39	9	0	2.896612	5.883620	-1.178979
40	9	0	3.610326	4.711580	0.507977
41	6	0	-2.387912	5.738471	0.396635
42	9	0	-3.488654	4.971081	0.554104
43	9	0	-2.577010	6.496685	-0.706041
44	9	0	-2.321885	6.580939	1.447246
45	6	0	-4.324243	6.189532	-3.924374
46	6	0	-5.468087	5.208887	-3.648143
47	6	0	-5.082789	4.105202	-2.655750
48	6	0	-6.195805	3.080027	-2.406284
49	6	0	-5.825424	2.043478	-1.335550
50	6	0	-6.883657	0.941088	-1.194521
51	6	0	-6.748067	-0.666809	7.675826
52	6	0	-6.865582	0.246679	6.452244
53	6	0	-6.715297	-0.501814	5.122123
54	6	0	-6.832608	0.406111	3.891864
55	6	0	-6.681886	-0.346917	2.563365

56	6	0	-6.803852	0.578719	1.346135
57	6	0	10.387085	3.087941	5.306625
58	6	0	9.065163	2.415067	4.925651
59	6	0	9.067480	1.840810	3.503517
60	6	0	7.746700	1.165502	3.114919
61	6	0	7.752866	0.589338	1.691708
62	6	0	6.420232	-0.078280	1.330124
63	6	0	4.936547	5.912578	-3.874270
64	6	0	5.857285	4.705310	-3.673413
65	6	0	5.348894	3.720844	-2.612539
66	6	0	6.250996	2.492809	-2.440207
67	6	0	5.780569	1.541085	-1.330873
68	6	0	6.648904	0.279361	-1.241025
69	1	0	-1.540915	-3.856397	-0.546213
70	1	0	0.850644	-3.969163	-0.556012
71	1	0	2.121112	2.837738	-0.061529
72	1	0	0.156350	6.640154	0.392041
73	1	0	-2.163870	3.020869	0.158452
74	1	0	-3.573201	0.408904	0.085683
75	1	0	-9.764384	-0.595122	-0.064771
76	1	0	3.284341	0.099146	-0.025264
77	1	0	9.356929	-1.525586	-0.142851
78	1	0	-4.638308	6.992231	-4.599049
79	1	0	-3,965982	6.649725	-2.997365
80	1	0	-3.471764	5.680666	-4.388990
81	1	0	-5.797643	4.752798	-4.591501
82	1	0	-6.335814	5.756993	-3.257111
83	1	0	-4.788883	4.565203	-1.702824
84	1	0	-4.189968	3.581039	-3.027144
85	1	0	-6.433513	2.565549	-3.347861
86	1	0	-7.115000	3.601055	-2.104213
87	1	0	-5.675988	2.563702	-0.380873
88	1	0	-4.861823	1.590032	-1.598755
89	1	0	-6.948592	0.394017	-2.142579
90	1	0	-7.868482	1.400310	-1.036803
91	1	0	-6.859631	-0.103508	8,607754
92	1	0	-7.518673	-1.445780	7.664310
93	1	0	-5.773768	-1.167805	7,704848
94	1	0	-6.104701	1.036993	6.510387
95	1	0	-7.836618	0.759734	6.470210
96	1	0	-7.476607	-1.292575	5.063704
97	1	0	-5.743669	-1.016005	5.103334
98	1	0	-6.071610	1.197488	3.951007
99	-	0	-7.804523	0.919228	3,911490
100	1	0	-7.442777	-1.135415	2,507347
101	1	0	-5.709460	-0.855317	2,544269
102	-	0	-6.043847	1.365361	1.419873
103	1	0	-7.774473	1.091677	1.373862
104	- 1	0	10.353719	3.486309	6.325659
105	1	0	11.221839	2.380131	5.253540
106	- 1	0	10.617480	3.920081	4.631793
107	- 1	0	8.244175	3.138660	5.022062
108	1	0	8,844685	1.610045	5.639732
109	1	0	9.888584	1.116517	3.406896
		-			

110	1	0	9.288917	2.645874	2.788333
111	1	0	6.925834	1.890624	3.209444
112	1	0	7.524810	0.361381	3.830458
113	1	0	8.570744	-0.137073	1.607716
114	1	0	7.979273	1.395524	0.982546
115	1	0	5.614560	0.659720	1.426026
116	1	0	6.198760	-0.861826	2.064945
117	1	0	5.338666	6.599058	-4.626174
118	1	0	3.940889	5.599626	-4.208742
119	1	0	4.806540	6.472897	-2.942710
120	1	0	6.860027	5.052544	-3.389688
121	1	0	5.980510	4.175897	-4.628042
122	1	0	4.335571	3.389765	-2.883139
123	1	0	5.247891	4.241390	-1.650995
124	1	0	7.276972	2.821417	-2.222521
125	1	0	6.304173	1.945237	-3.391590
126	1	0	4.738260	1.256813	-1.522972
127	1	0	5.786073	2.080768	-0.375060
128	1	0	7.700376	0.573469	-1.138664
129	1	0	6.580412	-0.268373	-2.188608
130	6	0	8.838210	-3.614768	-0.457803
131	6	0	10.154234	-4.177845	-0.510625
132	6	0	10.534614	-5.503220	-0.702727
133	6	0	-10.832139	-3.135563	-0.554439
134	6	0	-11.345940	-4.405452	-0.802686
135	6	0	11.910099	-5.881959	-0.726562
136	6	0	9.601202	-6.562628	-0.885911
137	6	0	11.219875	-3.224946	-0.338976
138	6	0	-10.526025	-5.542122	-1.053327
139	6	0	-12.752664	-4.643749	-0.819991
140	6	0	-11.794376	-2.090691	-0.319217
141	7	0	13.024841	-6.218326	-0.750151
142	7	0	8.855201	-7.445328	-1.037723
143	7	0	12.048980	-2.422803	-0.195105
144	7	0	-9.874412	-6.486103	-1.260758
145	7	0	-13.895717	-4.865990	-0.839689
146	7	0	-12.536547	-1.217544	-0.123440

Table S4. Cartesian coordinates for optimized geometry of TOCR2.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 б	0	-0.608904	-0.713356	-0.134375
2	6	0	0.822336	-0.751040	-0.129978
3	6	0	1.620354	0.440015	-0.140807
4	6	0	0.873251	1.618777	-0.159982
5	6	0	-0.533847	1.655854	-0.163020
6	6	0	-1.342695	0.518356	-0.147311
7	7	0	-1.060885	-1.980364	-0.132029
8	7	0	0.054773	-2.709639	-0.126530
9	7	0	1.207155	-2.039970	-0.124912

10	6	0	0.017645	-4.130174	-0.127585
11	6	0	-1.214297	-4.784743	-0.143355
12	6	0	-1.238116	-6.178249	-0.132608
13	6	0	-0.054571	-6.914901	-0.104441
14	6	0	1.167067	-6.239153	-0.095824
15	6	0	1.215585	-4.847963	-0.107521
16	6	0	-2.789862	0.569752	-0.139753
17	6	0	3.068124	0.413360	-0.132342
18	16	0	4.003619	1.911229	-0.297545
19	6	0	5.482305	1.022278	-0.181889
20	6	0	5.273601	-0.348152	-0.038450
21	6	0	3,909340	-0.688276	-0.003848
22	6	0	6.882643	1.295854	-0.165084
23	6	9	7,570172	0.082543	-0.005013
22	6	0 0	6.601849	-1.098837	0.065320
25	16	0 0	7,911574	2.671924	-0.285017
26	-10 6	0	9 340283	1 618343	-0 117717
20	6	0	8 9/5716	0 268162	0 017600
27	16	0	-3 6/1020	2 121010	-0 251268
20	10	0	5 166022	2.121910	0.16201/
29	0	0	5 024206	0 071699	0.103914
20 21	0 C	0	-3.034290	-0.0/1088	-0.009113
22	6	0	-3.090557	-0.48/30/	-0.045040
32	6	0	-0.54/690	1.001452	-0.134074
33	6	0	-7.305332	0.484489	-0.013437
34	6	0	-6.401618	-0.751092	0.041048
35	16	0	-7.490424	3.099524	-0.226838
36	6	0	-8.668599	0.753913	-0.0182/1
3/	6	0	-2.560451	-6.901451	-0.208954
38	9	0	-2.537866	-8.051411	0.493784
39	9	0	-2.867494	-7.220042	-1.486541
40	9	0	-3.574108	-6.145831	0.267579
41	6	0	2.444137	-7.043180	-0.107356
42	9	0	3.523688	-6.284392	0.182350
43	9	0	2.657795	-7.601407	-1.319905
44	9	0	2.397797	-8.050473	0.787841
45	6	0	4.499275	-7.085880	-4.396232
46	6	0	5.599837	-6.089644	-4.018767
47	6	0	5.167594	-5.101672	-2.928397
48	6	0	6.240463	-4.064029	-2.576080
49	6	0	5.829862	-3.142389	-1.418561
50	6	0	6.853181	-2.026513	-1.167390
51	6	0	6.575490	-1.223969	7.807398
52	6	0	6.734321	-2.020470	6.508998
53	6	0	6.577108	-1.160851	5.248709
54	6	0	6.734325	-1.951331	3.944108
55	6	0	6.577695	-1.086936	2.686018
56	6	0	6.736166	-1.896472	1.392707
57	6	0	-10.393665	-5.007679	5.148927
58	6	0	-9.086531	-4.280671	4.819796
59	6	0	-9.098331	-3.610797	3.440183
60	6	0	-7.792250	-2.881317	3.103259
61	6	0	-7.807956	-2.209439	1.722824
62	6	0	-6.489161	-1.491337	1.410793
63	6	0	-4.891067	-7.076660	-4.190889

64	6	0	-5.835447	-5.904556	-3.908109
65	6	0	-5.344402	-4.983149	-2.784258
66	6	0	-6.271765	-3.789259	-2.527080
67	6	0	-5.818680	-2.905460	-1.356061
68	6	0	-6.712687	-1.671287	-1.177825
69	1	0	1.392408	2.572122	-0.162243
70	1	0	-1.001517	2.635455	-0.168456
71	1	0	-2.131533	-4.212505	-0.157255
72	1	0	-0.083707	-7.997883	-0.078415
73	1	0	2.160702	-4.323646	-0.096357
74	1	0	3.515926	-1.687152	0.116459
75	1	0	9.685143	-0.517892	0.129728
76	1	õ	-3.351598	-1.509160	0.043612
70	1	â	-9 457605	0 012593	0 041818
78	1	â	4 847594	-7 802270	-5 147099
79	1	0	4 161737	-7 652044	-3 521750
80	1	0	3 625162	-6 5702044	_/ 910391
00 01	1	0	5.023102	-0.570205 E E22126	4.010301
01 02	1	0	6 100610	- 5.552150	-4.911947
02 02	1	0	0.400010		-3.0/0220
00	1	0	4.00/33/	-2.000020	-2.02000
04 05	1	0	4.250/28	-4.5/8890	-3.255100
85	1	0	6.464326	-3.45//26	-3.465011
86	1	0	7.176509	-4.5//601	-2.315559
87	1	0	5.690219	-3./52444	-0.51/029
88	1	0	4.854408	-2.695/9/	-1.64/969
89	1	0	6.909910	-1.395109	-2.062083
90	1	0	7.849895	-2.469853	-1.0413/3
91	1	0	6.69315/	-1.864/46	8.68/144
92	1	0	7.322414	-0.425045	7.876089
93	1	0	5.586346	-0.755807	7.867064
94	1	0	5.996749	-2.834335	6.485886
95	1	0	7.719914	-2.505168	6.495028
96	1	0	7.315543	-0.346841	5.271257
97	1	0	5.591183	-0.674459	5.262472
98	1	0	5.995450	-2.765318	3.922118
99	1	0	7.720084	-2.437699	3.931690
100	1	0	7.318079	-0.277652	2.709235
101	1	0	5.592525	-0.603560	2.699798
102	1	0	5.995343	-2.704797	1.386519
103	1	0	7.719194	-2.386198	1.387735
104	1	0	-10.353825	-5.474013	6.138542
105	1	0	-11.244259	-4.316947	5.140807
106	1	0	-10.603487	-5.796659	4.417874
107	1	0	-8.249534	-4.990496	4.869951
108	1	0	-8.886049	-3.521602	5.588097
109	1	0	-9.935423	-2.900207	3.389910
110	1	0	-9.300081	-4.369918	2.670965
111	1	0	-6.955625	-3.592932	3.151328
112	1	0	-7.589834	-2.123320	3.872943
113	1	0	-8.640039	-1.495452	1.685546
114	1	0	-8.016726	-2.969836	0.959652
115	1	0	-5.668620	-2.217901	1.456540
116	1	0	-6.284178	-0.756806	2.199112
117	1	0	-5.280742	-7.718921	-4.987209

118	1	0	-3.902558	-6.721771	-4.504065
119	1	0	-4.747914	-7.695705	-3.299323
120	1	0	-6.830167	-6.290553	-3.646983
121	1	0	-5.972127	-5.314936	-4.824917
122	1	0	-4.339369	-4.612772	-3.034018
123	1	0	-5.228655	-5.565158	-1.860300
124	1	0	-7.289956	-4.153888	-2.330948
125	1	0	-6.339410	-3.179476	-3.438953
126	1	0	-4.783080	-2.586786	-1.529459
127	1	0	-5.809801	-3.509613	-0.439574
128	1	0	-7.757908	-1.993448	-1.097067
129	1	0	-6.656607	-1.056982	-2.084532
130	6	0	-8.980454	2.128418	-0.118706
131	6	0	-10.328948	2,554992	-0.122879
132	1	0	-10.990878	1.699984	-0.043844
133	6	0	-10.950713	3,786869	-0.204410
134	6	0	-11.319972	6.124406	-0.385150
135	6	0	-12,582165	5.510452	-0.310042
136	6	0	-11,152349	7,498339	-0.500233
137	6	õ	-13,733647	6.306592	-0.352147
138	6	õ	-12,299761	8,276072	-0.540796
139	6	0 0	-13 567514	7 681257	-0 467507
140	6	õ	-10 263319	5 089718	-0 322681
140	6	õ	-12 393422	4 039870	-0 193059
142	8	õ	-9 056031	5 301623	-0 364248
1/13	6	0	-13 428099	3 125080	-0.004240
143	6	0 0	-14 806970	3 498922	-0.092050
1/15	6	0 0	-13 2/1186	1 713516	0.002002
145	7	0	-15 940863	3 767141	-0 090314
147	7	0 0	-13 123521	0 557992	0.000014
1/18	, 1	0	-10 166932	7 9/7210	-0 556313
1/0	1	0	-10,100002	5 915/210	-0.300533
150	6	0	10 71137/	1 965632	-0 106783
151	1	0	11 310005	1 07669/	0 01/088
152	5	0	11 /06206	3 1555/1	-0 216192
153	6	0	13 138210	<i>A</i> 776513	-0 3/3310
157	6	0	11 016116	5 160000	-0.165355
155	6	0	1/ 335231	5 502324	-0.405555
156	6	0	11 832057	6 836704	-0.500015
157	0	0	12 022007	7 544500	-0.028/10
158	0	0	14 252716	6 879654	-0.070092
150	6	0	12 960019	2 22/1/2	-0.550204 0 102107
160	0	0	10 700295	J.J24142 A A01511	0.103107
161	0	0	0 607500	4.491311	-0.391366
161	0 6	0	2.007000 10 77770	4.//1009	-0.405204
162	6	0	15.85//24	2.334239	-0.032/13
164	6	0	12.250017	2.040001	-0.010004
164	0	0	16,202/00	2 242426	0.125850
165	7	0	10.383484	2.848436	0.001146
167	/	0	15.3/8434 15.315034	-U.102/43	0.200050
10/ 160	1	0	10 07000	J.UJJLL0	-0.300050
100	T	0	10.0/0092	7.340100	-0./20458
170 170	9	0	-12.224035	9.00//10	-0.020200
171	9	0	-14.0410//	8.4/90/0 7 (10010	-0.511013
1/1	Э	Ø	12.3/2129	/.012213	-0.29/185

172	9	0	13.029564	8.873778	-0.824891

Table S5. Topologies and energy values of frontier molecular orbitals and HOMO-LUMO gaps of the compounds **TOCR1** and **TOCR2** calculated at B3LYP/6-31G(d,p) level.

Photophysical study

Figure S24. Theoretical absorption spectra of compounds **TOCR1** and **TOCR2** calculated at M062x/6-311+G(2d,p) level in CH₂Cl₂.

Electroni

Table S6. Electronic transitions associated with the absorption spectra of compounds **TOCR1** and **TOCR2** calculated at M062x/6-311+G(2d,p) level. Only transitions with $f \ge 0.1$ and a contribution greater than 10% are described.

Compoun d	c transitio n	E(eV)	λ (nm)	f	<i>MO</i> (coefficient %)
	$S_0 \rightarrow S_1$	1,95	636,92	2,97	H→L (82), H-1→L+1 (13)
TOCR1	$S_0 \rightarrow S_2$	2,28	543,53	0,51	H-1→L (33), H→L+1 (62)
IUCKI	$S_0 \rightarrow S_9$	4,00	309,64	0,47	H-6→L (16), H-3→L (18), H-1→L+2 (16)
	$S_0 \rightarrow S_1$	1,94	639,96	3,71	H→L (78), H-1→L+1 (15)
TOCR?	$S_0 \rightarrow S_2$	2,23	556,04	0,43	H-1→L (37), H→L+1 (53)
IOCK2	$S \rightarrow S$	3.05	407.01	0.19	H-1→L (11), H-1→L+2 (26),
	$5_0 - 5_4$	5,05	т07,01	0,19	H→L+1 (13), H→L+3 (35)

E: Transition energy, λ : Wavelength of the transition, f: Transition oscillator strength, MO: Molecular orbitals involved in the transition (H: HOMO. L: LUMO).

8. Photovoltaic studies

	0				
D	A weight ratio	J _{SC} (mA/cm ²)	$V_{OC}(V)$	FF	PCE (%)
	1:0.4	15.94	0.76	0.52	6.30
	1:0.8	16.53	0.77	0.55	7.00
	1:1.2	17.09	0.76	0.59	7.66
	1:1.3	16.47	0.75	0.56	6.92

Table S6a. Photovoltaic parameters of the P1:TOCR1 based PSCs

 for different weight ratio of P1 and TOCR1

Table S6b. Photovoltaic parameters of the P1:TOCR2 based PSCsfor different weight ratio of P1 and TOCR2

D:A weight ratio	J _{SC} (mA/cm ²)	$V_{OC}(V)$	FF	PCE (%)
1:0.4	17.98	0.91	0.56	9.16
1:0.8	18.52	0.92	0.60	10.22
1:1.2	19.38	0.91	0.63	11.11
1:1.3	18.64	0.92	0.61	10.46

Table S7a. Photovoltaic parameters of the P2:TOCR1 based PSCs for different weight ratio of P2 and TOCR1

D:A weight ratio	J _{SC} (mA/cm ²)	V _{OC} (V)	FF	PCE (%)
1:0.4	17.02	0.83	0.51	7.20
1:0.8	17.94	0.84	0.54	8.14
1:1.2	18.45	0.82	0.57	8.621
1:1.3	17.84	0.83	0.55	8.13

Table S7b. Photovoltaic parameters of the P2:TOCR2 based PSCsfor different weight ratio of P2 and TOCR2

D:A weight ratio	J _{SC} (mA/cm ²)	V _{OC} (V)	FF	PCE (%)
1:0.4	6.82	0.94	0.43	2.76
1:0.8	7.44	0.95	0.45	3.18
1:1.2	7.14	0.96	0.49	3.36
1:1.3	6.64	0.97	0.48	3.09

SVA exposure time	J _{SC} (mA/cm ²)	V _{OC} (V)	FF	PCE (%)
10 s	20.15	0.73	0.62	9.12
30 s	20.78	0.72	0.65	9.73
40 s	21.38	0.72	0.67	10.31
50 s	20.85	0.73	0.66	10.04

Table S8a. Photovoltaic parameters of the PSCs based on P1:**TOCR1** (1:1.2) active layer subjected to SVA treatment for different times.

Table S8b. Photovoltaic parameters of the PSCs based on P1:**TOCR2** (1:1.2) active layer subjected to SVA treatment for different times.

SVA exposure time	J _{SC} (mA/cm ²)	V _{OC} (V)	FF	PCE (%)
10 s	23.06	0.87	0.67	12.44
30 s	23.71	0.86	0.69	13.25
40 s	24.22	0.87	0.72	15.17
50 s	23.82	0.88	0.68	14.25

 Table S9a. Photovoltaic parameters of the PSCs based on P2:TOCR1

SVA exposure time	J _{SC} (mA/cm ²)	V _{OC} (V)	FF	PCE (%)
10 s	20.86	0.82	0.61	10.43
30 s	22.41	0.80	0.63	11.29
40 s	23.08	0.78	0.66	11.88
50 s	22.52	0.76	0.63	10.78

(1:1.2) active layer subjected to SVA treatment for different times.

Table S9b. Photovoltaic parameters of the PSCs based on P2:TOCR2(1:1.2) active layer subjected to SVA treatment for different times.

SVA exposure time	J _{SC} (mA/cm ²)	V _{OC} (V)	FF	PCE (%)
10 s	9.02	0.95	0.51	4.37
30 s	9.68	0.95	0.54	4.96
40 s	10.21	0.93	0.57	5.41
50 s	9.86	0.93	0.55	5.04

9. XRD studies

Figure S25. XRD patterns of pristine TOCR1 and TOCR2 films.