Electronic Supplementary Information

A Novel Sustainable and Green Mechanochemical Route from $(HSiO_{1.5})_n$ Polymer to Emissive Silicon Nanocrystals

Yuping Xu, a Yunzi Xin, b Kunihiko Kato b and Takashi Shirai *ab

*shirai@nitech.ac.jp

^a Department of Life Science and Applied Chemistry, Graduate School of
Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi
466-8555, Japan

^b Advanced Ceramics Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

Figure S1. XPS survey spectra of the mechanochemically treated $(HSiO_{1.5})_n$ polymer with milling balls in size of 10 mm at a rotation speed of 400 rpm in 3 hours (B10_T3h). In 3d comes from substrate of measurement, and Au is used for calibration. Si 2p, Si 2s and O 1s are attributed to pure $(HSiO_{1.5})_n$ polymer without Zr-related impurities after the mechanochemical process.

Figure S2. EDX spectra of mechanochemically treated $(HSiO_{1.5})_n$ polymer with milling balls in size of 10 mm at a rotation speed of 400 rpm in 3 hours (B10_T3h). C, Cu are collected from the grid for measurement. Peaks of Si and O exemplifies the presence of Si and O components, without Zr-related impurities after the mechanochemical process.

In terms of sustainability, We calculated the electric energy consumptions of a labmade tube furnace and a high-energy planetary ball-mill (Fritsch, Pulverisette 7) equipment for processing the same amount of $(HSiO_{1.5})_n$ polymer towards synthesis of Si NCs via thermal- or mechanochemical approaches, respectively. Specifically, the $(HSiO_{1.5})_n$ polymer was pyrolyzed under flowing 95% Ar/ 5% H₂ with a flux rate of 250 mL/min from room temperature to 1100 °C for 2.5 h, and held at 1100 °C for 1 h, then cooling to room temperature naturally. Under the condition of mechanochemical route, $(HSiO_{1.5})_n$ polymer were processed for 3 h in a sealed milling vessel (80 mL, filling rate: 10%) fulfilled with Ar. The electric energy consumption W is calculated by

W = PT

where *P* is the power consumption of devices which was measured by a clamp power logger (ZN-CTC11, OMRON Corp.) for a tube furnace or recorded by the EASY GTM-System equipped in a milling vessel. The monitored results are shown as Fig. S3. *T* is the electric supply time, which is equal to at least 3.5 h (2.5 h for heating process, in addition, holding at 1100 for 1 h) and 3 h for mechanochemical process.

As a result, in the case of thermal pyrolysis, $W = 2.359 \text{ kW} \cdot \text{h} = 8.492 \text{ x} 10^6 \text{ J}$, while for mechanochemically treatment process, $W = 0.162 \text{ kW} \cdot \text{h} = 5.843 \text{ x} 10^5 \text{ J}$. Therefore, the energy consumption of thermal pyrolysis is almost 15 times higher than planetary ball milling process.

Figure S3. (a) Power consumption of a tube furnace for synthesis of Si NCs via high temperature thermal pyrolysis of $(HSiO_{1.5})_n$ polymer (b) power consumption of a high-energy planetary ball-mill equipment for processing the same amount of $(HSiO_{1.5})_n$ polymer towards synthesis of Si NCs via mechanochemically treatment process.

Table S1. Comparison between conventional high temperature induced thermal pyrolysis and the proposed mechanochemical route of $(HSiO_{1.5})_n$ polymer for emissive

Synthesis route	Conditions	Surface passivation	Size/nm	PL wavelength/nm	QY	Ref.
Thermal pyrolysis	1100 °C, 1 h 5% H ₂ /95% Ar	Decyl-	3.2	600~650	NA	1
Thermal pyrolysis	1100 °C, 1 h, 5% H ₂ /95% Ar	Dodecyl-	1.2	420	3%	2
Thermal pyrolysis	1100 °C, 1 h, 5% H ₂ /95% Ar	allylbenzene-	1.0	600	5%	3
Thermal pyrolysis	1100 °C, 1 h 5% H ₂ /95% Ar	Dodecyl-	4.6	800	10%	4
Mechanochemical route	10 mm, 400 rpm, 3 h	Decyl-	4.8	610	9.8%	This work

free-standing Si NCs synthesis and their optical properties.

References

1. M. L. Mastronardi, F. Hennrich, E. J. Henderson, F. Maier-Flaig, C. Blum, J. Reichenbach, U. Lemmer, C. Kübel, D. Wang, M. M. Kappes, G. A. Ozin, *J. Am. Chem. Soc.*, **2011**, *133*, 11928–11931.

2. Y. Xin, R. Wakimoto, K. I. Saitow, Chem. Lett., 2017, 46, 699-702.

3. M. L. Mastronardi, F. Maier-Flaig, D. Faulkner, E. J. Henderson, C. Kübel, U. Lemmer, G. A. Ozin, *Nano Lett.*, **2012**, *12*, 337–342.

4. S. Terada, Y. Xin, K. I. Saitow, Chem. Mater., 2020, 32, 8382-8392.