Facile synthesis of ultralight S-doped Co₃O₄ microflowers@reduced graphene oxide aerogel with defect and interface engineering for broadband electromagnetic wave absorption

Hui Gao, Shougang Chen*, Shuang Wei, Wen Li, Mutian Zhang, Ning Sun

School of Materials Science and Engineering, Ocean University of China, Qingdao

266100, China

E-mail: sgchen@ouc.edu.cn

Fig. S1. XRD patterns of GO, RGO and S-RGO.

Fig. S2. (a) The survey scan spectrum of S-Co $_3O_4@RGO$ aerogel, (b) EPR spctra of S-

Co₃O₄@RGO-2, S-Co₃O₄@RGO-10 and S-Co₃O₄@RGO-20.

Fig. S3. XPS analysis of Co₃O₄: (a) Co 2p, (b) O 1s.

Fig. S4. FTIR spectra of (a) GO and S-RGO, (b) Co₃O₄ and S-Co₃O₄.

Fig. S5. 3D RL projection mappings, RL curves with different thickness and 2D RL contour maps of (a-c) S-Co₃O₄@RGO-2, (d-f) S-Co₃O₄@RGO-10, (g-i) S-Co₃O₄@RGO-20 with filling ratio of 5 wt.%.

Fig. S6. (a, b) the ε' and ε'' of complex permittivity, (c) $tan\delta_{\varepsilon}$, (d, e) the μ' and μ'' of the complex permeability, (f) $tan\delta_{\mu}$ of S₀, S₁ and S₂.

To further investigate the effect of Co₃O₄ and RGO ratios on the EMA properties,

three types of 3D S-Co₃O₄/RGO aerogels with different mass ratios of Co₃O₄ and RGO (2:1, 1:1, 1:2) are prepared, marked as S₀, S₁ and S₂, respectively. As displayed in Fig. S6a-S6f, the ε' values of S₀, S₁ and S₂ decrease from 7.8 to 2.7, 11.1 to 5.3 and 12.0 to 4.2, respectively, while the ε'' values of S₀, S₁ and S₂ maintain at 1.8, 3 and 5 in 2.0-18.0 GHz, respectively. With the increase of RGO mass fraction in the S-Co₃O₄@RGO composite, both the ε' and ε'' values increase, which indicates the enhanced conduction loss and polarization relaxation. However, too excessive dielectric loss brings the mismatching between ε_r and μ_r . Then, EMW cannot enter the absorber, which is not favourable to the EMA. The RL_{min} value of S₀ is -42.1 dB at 2.0 mm (Fig. S7a-S7c). As presented in Fig. S7d-S7f, the RL_{min} value of S₁ can reach up to -56.7 dB at 5.44 GHz with the matching thickness of 3.6 mm. The RL_{min} value of S₂ is -26.6 dB at 7.0 mm (Fig. S7g-S7i). From above discussion, the EMA performance of the S₁ sample is optimal. The 1:1 ratio of RGO/Co₃O₄ endows the appropriate balance between good impedance matching and strong loss capability.

Fig. S7. 3D RL projection mappings, RL curves with different thickness and 2D RL contour maps of (a-c) S_0 , (d-f) S_1 , (g-i) S_2 with filling ratio of 5 wt.%.

Fig. S8. (a) 3D RL projection mappings, (b) RL curves with different thickness and (c)2D RL contour maps of R₂ under 10 wt.% loading.

Fig. S9. Two-dimensional contour maps of $|Z_{in}/Z_0|$ values of R_0

Fig. S10. (a) 3D RL projection mappings, (b) RL curves with different thickness and

(c) 2D RL contour maps of R_4 under 5 wt.% loading.

Fig. S11. The crystal structure models of (a) R₃ and (b) R₄. (c) Charge transfer indicated

by variation of charge in each atomic layer along the z direction for R₃ and R₄ systems.

The pore size and surface area are obtained by the N_2 adsorption-desorption isotherms and pore diameters of the synthesized composites. As seen in Fig. S12, Co₃O₄ and S-Co₃O₄@RGO aerogels display type IV isotherm with an obvious hysteresis loop in the P/P₀ range of 0-1.0, which indicates the presence of mesopores. Besides, the Barrett–Joyner–Halenda (BJH) pore size distribution analysis (the inset in Fig. S12) reveals that the average pore diameter of Co₃O₄ is mainly concentrated in 2.4 nm and 14.64 nm, and the dominant pore size of S-Co₃O₄@RGO focuses on 2.1 nm. Benefiting from the high porosity, the mesoporous structure and high specific surface area, the 3D aerogel structure improves the reflection of EMW inside the material, and the air entering the pores can modulate the effective permittivity and impedance matching according to the Maxwell-Garnett model^{1, 2}.

Fig. S12. N_2 adsorption (orange)-desorption (purple) isotherms with corresponding pore-size distributions in the inset for (a) Co_3O_4 and (b) S- Co_3O_4 @RGO composites.

To explore the influence of filler loading ratios on the EMW absorption properties, we perform the electromagnetic measurements of the sample of $S-Co_3O_4@RGO$ with three different filler loading ratios.³ As shown in the figure below, it can be found that the values of RL_{min} of S-Co₃O₄@RGO are -13.1 dB, -56.7 dB and -39.2 dB for the filler loading ratios of 2 wt%, 5 wt% and 8 wt%, respectively. Consequently, the S-Co₃O₄@RGO exhibits the optimal EMW absorption performance with the filler loading ratio of 5 wt%.

Fig. S12. 3D RL projection mappings of S-Co₃O₄@RGO with filling ratio of (a) 2 wt.%, (b) 5 wt.% and (c) 8 wt.%, RL curves with different thickness of S-Co₃O₄@RGO with filling ratio of (d) 2 wt.%, (e) 5 wt.% and (f) 8 wt.%.

Samples	Ratios (wt.%)	d (mm)	f (GHz)	RL _{min} (dB)	Bandwidth (GHz)	Ref.
Fe ₃ O ₄ /CNTs	30	3	7.12	-35.9	4.3	4
FeNi/RGO	20	3	11.12	-39.86	4	5
FeNi ₃ @RGO/MoS ₂	40	2	14.72	-30.39	4.72	6
Co ₃ O ₄ Nanosheets/RGO	5	3.6	5.61	-45.15	5.61	7
Co ₃ O ₄ /Ni Foam	40	2.1	11.2	-41.1	3.46	8
PEDOT/RGO/C03O4	50	2	10.7	-51.1	3.1	9
Co/C	40	4	5.8	-35.3	5.8	10
Fe ₃ O ₄ @SiO ₂ /RGO	50	1.5	17.8	-26.4	2.6	11
Ni/RGO	20	9	13	-24.8	6.9	12
ZnFe ₂ O ₄ /SiO ₂ /RGO	33	2.8	13.9	-43.9	6	13
S-Co ₃ O ₄ @RGO aerogels	5	3.6	5.44	-56.7	8.48	This worl

Table S1. Typical EMW absorbers reported in recent literatures.

Table S2. The binding energy calculation of T_1 and T_2 structures (eV).

Structures	E _{total}	E ₁	E ₂	E _b
T ₁	-102208.43	-10780.75	-15324.80	-76102.88
T ₂	-102212.45	-10780.75	-15324.80	-76106.90

The ease of forming a composite structure is characterized by the binding energy, which is defined as: $E_b = E_{total} - E_1 - E_2$, where E_b is the binding energy, E_1 and E_2 represent the energy of different monomers, and E_{total} is the total energy of the composite structure, respectively. The smaller the absolute value of E_b is, the easier the structure is to form.

References

- 1 X. Qing, X. Yue, B. Wang and Y. Lu, *Journal of Alloys and Compounds*, 2014, **595**, 131-137.
- 2 F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu, C. Huang and W. Lu, Nanomicro Lett, 2021, 13, 43.
- 3 R. Shu, W. Li, Y. Wu, J. Zhang and G. Zhang, *Chemical Engineering Journal*, 2019,
 362, 513-524.
- 4 M. Ren, F. Li, B. Wang, J. Wei and Q. Yu, *Journal of Magnetism and Magnetic Materials*, 2020, **513**.
- 5 A. Dong, Z. Zhiyi, W. Yanhui, C. Shuaishuai and L. Yaqing, Journal of Superconductivity and Novel Magnetism, 2018, **32**, 385-392.
- K. Ding, Y. Huang, S. Li, N. Zhang and J. Wang, *Journal of Alloys and Compounds*, 2016, 689, 208-217.
- 7 Y. Ding, Z. Zhang, B. Luo, Q. Liao, S. Liu, Y. Liu and Y. Zhang, *Nano Research*, 2016, 10, 980-990.
- 8 W. Gu, B. Quan, X. Liang, W. Liu, G. Ji and Y. Du, ACS Sustainable Chemistry & Engineering, 2019, 7, 5543-5552.
- 9 P. B. Liu, Y. Huang and X. Sun, ACS Appl Mater Interfaces, 2013, 5, 12355-12360.
- 10 Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang and L. Zheng, ACS Appl Mater Interfaces, 2015, 7, 13604-13611.
- 11 Y. Wang, Y. Lai, S. Wang and W. Jiang, *Ceramics International*, 2017, 43, 1887-1894.

- 12 Y. Zhang, H. L. Ma, K. Cao, L. Wang, X. Zeng, X. Zhang, L. He, P. Liu, Z. Wang and M. Zhai, *Materials (Basel)*, 2018, **11**.
- 13 J. Feng, Y. Hou, Y. Wang and L. C. Li, ACS Applied Materials & Interfaces, 2017,9.