## Optimizing the performance of the near-infrared (NIR) photothermal conversion via modulating the domain size of chiral nematic phase in the co-assembled cellulose nanocrystals composite films

Kai Feng, Guodan Wei, Mengfan Lu, Naiwei Gao, Yapei Wang and Zhaoxia Jin\*

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, People's Republic of China

\*Email: jinzx@ruc.edu.cn

## Content

## Figures

| Fig. S1 The vis-NIR transmittance spectra (a) and CD spectra (b) of pure CNCs and $\mbox{CP}_{x}$            |
|--------------------------------------------------------------------------------------------------------------|
| composite filmsS4                                                                                            |
| Fig. S2 Cross-sectional SEM images of (a) $CP_1$ ; (b) $CP_2$ ; (c) $CP_3$ ; (d) $CP_4$ , (e) $CP_5$ and (f) |
| CP <sub>6</sub> composite filmS5                                                                             |
| Fig. S3 The magnified cross-sectional SEM images of (a) $CP_5$ and (b) $CP_6$                                |
| compositefilmS6                                                                                              |
| Fig. S4 UV-vis-NIR absorption spectrum of pure PEDOT: PSS filmS7                                             |
| Fig. S5 The surface temperature of $\ensuremath{CP}_x$ composite films induced by NIR light                  |
| irradiation (750 nm) under different powerS8                                                                 |
| Fig. S6 The surface temperature of $\ensuremath{CP}_x$ film increases and decreases through                  |
| alternatively turn-on and turn-off light irradiation under different power. (a) CP <sub>1</sub> ; (b)        |

| CP <sub>2</sub> ; (c) CP <sub>3</sub> ; (d) CP <sub>4</sub> ; (e) CP <sub>5</sub> ; (f) CP <sub>6</sub> composite film |                          |
|------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <b>Fig. S7</b> A linear fitting correlation between cooling period ( <i>t</i> ) and $-ln\theta$                        | with an <i>R</i> -       |
| squared value of over 0.99. $\theta$ refers to the ratio of $\Delta T$ to $\Delta T_{max}$                             | S10                      |
| Fig. S8 The cross-sectional SEM image of (a) HPC/PEDOT: PSS/OS/TA with                                                 | h 3.43 wt.%              |
| PEDOT; (c) PVP/PEDOT: PSS/OS/TA with 3.43 wt.% PEDOT; POM im                                                           | nage of (b)              |
| HPC/PEDOT: PSS/OS/TA with 3.43 wt.% PEDOT; (d) PVP/PEDOT: PSS/OS/T                                                     | <sup>-</sup> A with 3.43 |
| wt.% PEDOT                                                                                                             | S11                      |
| Fig. S9 The increase and decrease of the surface temperature of pure                                                   | PEDOT: PSS               |
| film through alternative turn-on and turn-off light irradiation unde                                                   | er different             |
| power                                                                                                                  | S1                       |
| 2                                                                                                                      |                          |
| Fig. S10 POM images of (a) CNCs/PEDOT: PSS/OS and (b) CNCs/PED                                                         | OT: PSS/TA               |
| film                                                                                                                   | S13                      |
| Fig. S11 POM image of pure CNCs film                                                                                   | S14                      |
| Fig. S12 POM image of CP <sub>6</sub> composite film                                                                   | S15                      |
| Fig. S13 POM images of CNCs/PEDOT: PSS composite films with the mass                                                   | s ratio of (a)           |
| CNCs : (PEDOT: PSS) = 95:5; (b) CNCs : (PEDOT: PSS) = 80:20                                                            | S16                      |
| Fig. S14 (a) POM image of pure CNCs (b.d.) film. (b) The cross-sectional SE                                            | M image of               |
| pure CNCs (b.d.) film                                                                                                  | S17                      |
| Fig. S15 The comparison of temperature changes of $CP_x$ composite films (i                                            | the red line)            |
| and $CP_x$ (b.d.) films (the black line) with different PEDOT: PSS contents, ur                                        | nder the 1.5             |
| W light radiation (750 nm laser)                                                                                       | S18                      |

## Tables

| Table        | <b>S1</b>  | Sample          | codes                     | of                       | CP <sub>x</sub> | composite     |
|--------------|------------|-----------------|---------------------------|--------------------------|-----------------|---------------|
| films        |            |                 | S19                       |                          |                 |               |
| Table S2 Th  | e composit | ions of CNCs/PE | EDOT: PSS, CN             | Cs/PEDOT:                | : PSS/OS, CN    | ICs/PEDOT:    |
| PSS/TA, PEI  | DOT: PSS/C | S/TA, HPC/PEC   | )ot: pss/os/ <sup>-</sup> | ra, pvp/pi               | EDOT: PSS/0     | DS/TA, and    |
| CNCs(b.d.)/I | PEDOT: PSS | /OS/TA compos   | site films                |                          |                 | S20           |
| Table S3 NI  | R photothe | ermal conversio | on efficiency (           | $\eta_{\rm PT}$ ) of pur | re PEDOT: P     | SS and $CP_x$ |
| composite f  | ilms       |                 |                           |                          |                 | S22           |



Fig. S1 The vis-NIR transmittance spectra (a) and CD spectra (b) of pure CNCs and  $\mbox{CP}_{x}$ 

composite films.



Fig. S2 Cross-sectional SEM images of (a)  $CP_1$ ; (b)  $CP_2$ ; (c)  $CP_3$ ; (d)  $CP_4$ , (e)  $CP_5$  and (f)

CP<sub>6</sub> composite film.



Fig. S3 The magnified cross-sectional SEM images of (a)  $CP_5$  and (b)  $CP_6$  composite

film.



Fig. S4 UV-vis-NIR absorption spectrum of pure PEDOT: PSS film.



Fig. S5 The surface temperature of  $CP_x$  composite films induced by NIR light irradiation (750 nm) under different power of light.



**Fig. S6** The surface temperature of  $CP_x$  film increases and decreases through alternatively turn-on and turn-off light irradiation under different power. (a)  $CP_1$ ; (b)  $CP_2$ ; (c)  $CP_3$ ; (d)  $CP_4$ ; (e)  $CP_5$ ; (f)  $CP_6$  composite film.



**Fig. S7** A linear fitting correlation between cooling period (*t*) and  $-ln\theta$  with an *R*-squared value of over 0.99.  $\theta$  refers to the ratio of  $\Delta T$  to  $\Delta T_{max}$ .



**Fig. S8** Characterizations of HPC/PEDOT: PSS/OS/TA (a, b) and PVP/PEDOT: PSS/OS/TA (c, d). Both samples contained 3.43 wt.% PEDOT. (a, c) The cross-sectional SEM images. (b, d) POM images. These images confirmed that there was no chiral nematic nanostructure in these composite films.



**Fig. S9** The increase and decrease of the surface temperature of pure PEDOT: PSS film through alternative turn-on and turn-off light irradiation under different power.



Fig. S10 POM images of (a) CNCs/PEDOT: PSS/OS and (b) CNCs/PEDOT: PSS/TA film.



Fig. S11 POM image of pure CNCs film.



Fig. S12 POM image of CP<sub>6</sub> composite film.



Fig. S13 POM images of CNCs/PEDOT: PSS composite films with the mass ratio of (a)

CNCs : (PEDOT: PSS) = 95:5; (b) CNCs : (PEDOT: PSS) = 80:20.



Fig. S14 (a) POM image of pure CNCs (b.d.) film. (b) The cross-sectional SEM image of

pure CNCs (b.d.) film.



**Fig. S15** The comparison of temperature changes of  $CP_x$  composite films (the red line) and  $CP_x$  (b.d.) films (the black line) with different PEDOT: PSS contents, under the 1.5 W light radiation (750 nm laser).

| Sample codes    | Weight ratio                                        |
|-----------------|-----------------------------------------------------|
|                 | CNCs : (PEDOT:PSS) : OS : (TA + zonyl) <sup>a</sup> |
| CP1             | 75.19 : 3.96 : 8.35 : 12.50                         |
| CP <sub>2</sub> | 71.60 : 7.95 : 7.95 : 12.50                         |
| CP <sub>3</sub> | 67.96 : 11.99 : 7.55 : 12.50                        |
| CP <sub>4</sub> | 64.29 : 16.07 : 7.14 : 12.50                        |
| CP <sub>5</sub> | 60.58 : 20.19 : 6.73 : 12.50                        |
| CP <sub>6</sub> | 56.83 : 24.36 : 6.31 : 12.50                        |

**Table S1** Sample codes of  $CP_x$  composite films.

 $^{\rm a}$  The ratios of TA and zonyl were kept at 10 % and 2.5 %, respectively.

**Table S2** The compositions of CNCs/PEDOT: PSS, CNCs/PEDOT: PSS/OS, CNCs/PEDOT:PSS/TA, PEDOT: PSS/OS/TA, HPC/PEDOT: PSS/OS/TA, PVP/PEDOT: PSS/OS/TA andCNCs(b.d.)/PEDOT: PSS/OS/TA composite films.

| Sample             | Weight ratio                          |
|--------------------|---------------------------------------|
| CNCs/PEDOT: PSS    | CNCs : (PEDOT: PSS)                   |
|                    | 93.54 : 3.96                          |
|                    | 89.55 : 7.95                          |
|                    | 85.51 : 11.99                         |
|                    | 81.43 : 16.07                         |
|                    | 77.31 : 20.19                         |
| CNCs/PEDOT: PSS/OS | CNCs : (PEDOT: PSS) : OS <sup>a</sup> |
|                    | 84.19 : 3.96 : 9.35                   |
|                    | 80.60 : 7.95 : 8.95                   |
|                    | 76.96 : 11.99 : 8.55                  |
|                    | 73.29 : 16.07 : 8.14                  |
|                    | 69.58 : 20.19 : 7.73                  |
| CNCs/PEDOT: PSS/TA | CNCs : (PEDOT: PSS) : TAª             |
|                    | 83.54 : 3.96 : 10                     |
|                    | 79.55 : 7.95 : 10                     |
|                    | 75.51 : 11.99 : 10                    |

71.43 : 16.07 : 10

67.31:20.19:10

PEDOT: PSS/OS/TA (PEDOT: PSS) : OS : TA : Zonyl 15.96 : 33.66 : 40.31 : 10.07 27.99 : 27.99 : 35.21 : 8.81 37.42 : 23.56 : 31.21 : 7.81 45.00 : 19.99 : 28.00 : 7.01 51.22 : 17.07 : 25.37 : 6.34 HPC (or PVP, CNCs(b.d))/PEDOT: PSS/OS/TA HPC (or PVP, CNC(b.d)) : (PEDOT: PSS) : OS : TA<sup>a</sup> 75.19 : 3.96 : 8.35 : 10 71.60 : 7.95 : 7.95 : 10 67.96 : 11.99 : 7.55 : 10 64.29 : 16.07 : 7.14 : 10 60.58 : 20.19 : 6.73 : 10

<sup>a</sup>: The zonyl content was kept at 2.5% if not specified.

| Samples           | PEDOT content | η <sub>ΡΤ</sub> |
|-------------------|---------------|-----------------|
|                   | (wt.%)        | (%)             |
| (Pure PEDOT: PSS) | 28.57         | 68.7            |
| CP1               | 1.13          | 71.2            |
| CP <sub>2</sub>   | 2.27          | 73.8            |
| CP <sub>3</sub>   | 3.43          | 77.0            |
| CP <sub>4</sub>   | 4.59          | 77.0            |
| CP <sub>5</sub>   | 5.77          | 77.6            |
| CP <sub>6</sub>   | 6.96          | 64.2            |

Table S3 NIR photothermal conversion efficiency ( $\eta_{\text{PT}}$ ) of pure PEDOT: PSS and  $\text{CP}_x$ 

composite films.