Electronic Supplementary Information

Achieving redox-responsive organic afterglow via dopant-matrix

design strategy

Xuefeng Chen, [#] *Guangming Wang,*[#] *Xiuzheng Chen, Xinjian Deng and Kaka Zhang**

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.

*Email: zhangkaka@sioc.ac.cn

Table of Contents

Experimental Contents

Fig. S1 UV-vis spectra of BF₂bdk in different solvents. DCM, EA, ACE and THF refer to dichloromethane, ethyl acetate, acetone and tetrahydrofuran, respectively. under 365 nm UV and after removal of 365 nm UV lamp.

Fig. S2 Room-temperature steady-state emission spectra of BF₂bdk in different solvents. DCM, EA, ACE and THF refer to dichloromethane, ethyl acetate, acetone and tetrahydrofuran, respectively.

Fig. S3 Excitation spectra of BF₂bdk-TPO samples.

Fig. S4 UV-vis spectra of BF₂bdk-TPO-0.5% samples.

Fig. S5 (A) Photographs of the spiroBF₂-TP-TPO powders with different TPO contents. (B) Delayed emission (1 ms delay) spectra of spiroBF₂-TP-TPO samples with different TPO contents. TP plus TPO matrices with different TPO contents (0%, 10%, 25%, 50%, 75% and 100%) have been used to accommodate BF₂bdk. It is found that when the TPO contents increase to 25%, the spiroBF₂-TP-TPO powders exhibited room-temperature afterglow which can be observed by human eyes in a dark room.

Fig. S6 S_1 and T_1 levels of DPEBF₂ with different conformation obtained by TD-DFT calculation.

Fig. S7 (A) Variable-temperature steady-state and (B) delayed emission (1 ms delay) spectra of DPFBF₂-TPO-0.01% powders.

Fig. S8 The TD-DFT calculated results of DPEBF₂ singlet and triplet excited states. The ΔE_{ST} value is estimated from fluorescence and phosphorescence maxima in Fig. 5 to be 0.46 eV. The energy level of T₂ state is sandwiched between S₁ and T₁. Therefore, the S₁-to-T₂ ISC channel with relatively small singlet-triplet energy gap and relatively large SOCME of 2.59 cm⁻¹ can mediate the intersystem crossing of DPEBF₂ system.

Fig. S9 The TD-DFT calculated results of fluoreneBF₂ singlet and triplet excited states. The ΔE_{ST} value is estimated from fluorescence and phosphorescence maxima in Fig. 5 to be 0.52 eV. The energy level of T₂ state should be sandwiched between S₁ and T₁. Therefore, the S₁-to-T₂ ISC channel with relatively small singlet-triplet energy gap and relatively large SOCME of 1.17 cm⁻¹ can mediate the intersystem crossing of fluoreneBF₂ system.

Fig. S10 The TD-DFT calculated results of DPFBF₂ singlet and triplet excited states. The TD-DFT calculated results of fluoreneBF₂ singlet and triplet excited states. The ΔE_{ST} value is estimated from fluorescence and phosphorescence maxima in Fig. 5 to be 0.48 eV. The energy level of T₂ state should be sandwiched between S₁ and T₁. Therefore, the S₁-to-T₂ ISC channel with relatively small singlet-triplet energy gap and relatively large SOCME of 0.60 cm⁻¹ can mediate the intersystem crossing of DPFBF₂ system.

Fig. S11 The TD-DFT calculated results of spiroBF2 singlet and triplet excited states.

Fig. S12 Single crystal structures of (A) DPEBF₂, (B) fluoreneBF₂ and (C)spiroBF₂.

Fig. S13 ¹H NMR spectra of DPEBF₂.

Fig. S14 ¹³C NMR spectra of DPEBF₂.

Fig. S15¹⁹F NMR spectra of DPEBF₂.

Fig. S16¹¹B NMR spectra of DPEBF₂.

Fig. S17 LRMS and HRMS spectra of DPEBF₂.

Fig. S18 FT-IR spectra of DPEBF₂.

Fig. S19 ¹H NMR spectra of DPFBF₂.

Fig. S20 ¹³C NMR spectra of DPFBF₂.

Fig. S21 ¹⁹F NMR spectra of DPFBF₂.

Fig. S22 ¹¹B NMR spectra of DPFBF₂.

Fig. S23 MS spectra of DPFBF₂.

Fig. S24 FT-IR spectra of DPFBF₂.

Fig. S25 HPLC spectrum of DPEBF₂ UV absorption was monitored at 376 nm.

Fig. S26 The fluorescence decay profiles of BF₂bdk in dichloromethane.

Table S1 Photophysical data of BF2bdk compounds at room temperature.

Table S2 Photophysical data of BF₂bdk-TPO-0.01% and BF₂bdk-TPO-0.5% powders at room temperature.

Table S3 Comparison of the S_1 and T_1 energy levels between TD-DFT results and experimental results.

Table S4 Crystal data and structure refinement for d8v20637 (DPEBF₂).

Table S5 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² x10³)

for d8v20637 (DPEBF₂). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. **Table S6** Bond lengths [Å] and angles [°] for d8v20637 (DPEBF₂).

Table S7 Crystal data and structure refinement for mo_d8v20682_0m (fluoreneBF₂).

Table S8 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for mo_d8v20682_0m (fluoreneBF₂). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S9 Bond lengths [Å] and angles [°] for mo_d8v20682_0m (fluoreneBF₂).

Table S10 Crystal data and structure refinement for mo_d8v20638_0m (SpiroBF₂).

Table S11 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for mo_d8v20638_0m (SpiroBF2). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S12 Bond lengths [Å] and angles [°] for mo_d8v20638_0m (SpiroBF₂).

Experimental Contents

Materials

Phenyl ether (>99.0%, Aladdin), 9,9-dimethyl fluorene (98%, Adamas), 9,9diphenylfluorene (98%, ARK), 9,9'-spirobifluorene (98%, Bide Pharmatech), acetic anhydride (98.5%, Sinopharm Chemical Reagent), boron trifluoride diethyl etherate (98%, TCI), NaClO (reagent, 5%chlorine, Acros), triphenylphosphine (>99.0%, Adamas), triphenylphosphine oxide (98%, Aladdin).

Synthesis of DPEBF₂ via cascade reaction

Into a round bottom flask were added phenyl ether (0.2 mL, 1.3 mmol), acetic anhydride (2 mL) and boron trifluoride diethyl etherate (0.8 mL). The reaction mixture was heated to 60 °C and stirred for 4 h. Then the reaction was quenched by adding the reaction mixture drop wise into cold water. The precipitates were washed by water for three times and dried under vacuum. The crude product was purified by column chromatography over silica gel using petroleum ether/dichloromethane (1:1) as eluent to give white solids with an isolation yield of 32%. The DPEBF₂ was further purified three cycles of recrystallization in spectroscopic by grade dichloromethane/hexane (CCDC 2159995). ¹H NMR (400 MHz, Chloroform-d, relative to Me₄Si/ppm) δ 8.05 (d, J = 2.4 Hz, 1H), 8.03 (d, J = 2.2 Hz, 1H), 7.44 (t, J = 7.9 Hz, 2H), 7.28 (t, J = 6.0 Hz 1H), 7.10 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 6.48 (s, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 191.05, 181.79, 164.54, 154.58, 131.64, 130.30, 125.43, 124.93, 120.63, 117.51, 96.67, 24.64.¹⁹F NMR (376 MHz, Chloroform-d, 298 K, relative to CFCl₃ /ppm) δ -139.33 (20%), -139.39 (80%). ¹¹B NMR (128 MHz, Chloroform-*d*, 298 K, relative to BF₃·Et₂O /ppm) δ 0.00. FT-IR (KBr, cm⁻¹): v 3149.1, 3069.4, 1589.4, 1543.4, 1505.8, 1489.5, 1439.9, 1425.7, 1379.4, 1356.8, 1313.4, 1249.2, 1218.0, 1199.3, 1178.3, 1148.5, 1129.1, 1088.6, 1062.4, 1023.8, 982.5, 916.9, 879.0, 866.8, 847.0, 809.5, 798.3, 775.3, 749.8, 741.0, 688.9, 623.4, 600.3, 572.3, 487.2, 476.1. LRMS, m/z 325.1. HRMS m/z found (calcd for $C_{16}H_{13}O_3^{10}BF_2Na^+$): 324.0854 (324.0854).

Synthesis of fluoreneBF2 via cascade reaction

Into a round bottom flask were added 9,9-dimethyl fluorene (345 mg, 1.0 mmol), acetic anhydride (5 mL) and boron trifluoride diethyl etherate (0.8 mL). The reaction mixture was heated to 60 °C and stirred for 5 h. Then the reaction was quenched by adding the reaction mixture drop wise into cold water. The precipitates were washed by water for three times and dried under vacuum. The crude product was purified by column chromatography over silica gel using petroleum ether/dichloromethane (1:1) as eluent to give yellow solids with an isolation yield of 50%. The fluoreneBF₂ was further purified by three cycles of recrystallization in spectroscopic grade dichloromethane/hexane. Melting point of fluoreneBF₂ was measured by DSC to be 230 °C. Single crystals of fluoreneBF₂ were also grown from spectroscopic grade dichloromethane/hexane (CCDC 2049504). The synthetic procedures are the same as our previous study (*Adv. Opt. Mater.*2021, 2100353).

Synthesis of DPFBF2 via cascade reaction

Into a round bottom flask were added 9,9-diphenylfluorene (318.4 mg, 1.0 mmol), acetic anhydride (2 mL) and boron trifluoride diethyl etherate (0.52 mL). The reaction mixture was heated to 60 °C and stirred for 4 h. Then the reaction was quenched by adding the reaction mixture drop wise into cold water. The precipitates were washed by water for three times and dried under vacuum. The crude product was purified by column chromatography over silica gel using petroleum ether/dichloromethane (1:1) as eluent to give yellow solids with an isolation yield of 48%. The DPFBF₂ was further purified by three cycles of recrystallization in spectroscopic grade dichloromethane/hexane. ¹H NMR (400 MHz, DMSO-*d*₆, relative to Me₄Si /ppm) δ 8.28 (d, *J* = 8.3 Hz, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 8.20 (s, 1H), 8.13 (d, *J* = 7.3 Hz, 1H), 7.54-7.44 (m, 3H), 7.36 (s, 1H), 7.33 – 7.25 (m, 6H), 7.16 (d, *J* = 6.7 Hz, 4H), 2.44 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.49, 182.45, 152.87, 152.30, 147.89, 144.57, 138.14, 130.27, 130.05, 129.29, 128.58, 128.05, 128.00, 127.20, 126.70, 126.56, 121.64, 120.75, 97.39, 65.65, 24.68.¹⁹F NMR (376 MHz, Chloroform-*d*, 298 K, relative to CFCl₃ /ppm) δ -139.00 (20%), -139.07 (80%). ¹¹B

NMR (128 MHz, Chloroform-*d*, 298 K, relative to $BF_3 \cdot Et_2O$ /ppm) δ 0.01. FT-IR (KBr, cm⁻¹): v 3149.1, 3069.4, 1589.4, 1543.4, 1505.8, 1489.5, 1439.9, 1425.7, 1379.4, 1356.8, 1313.4, 1249.2, 1218.0, 1199.3, 1178.3, 1148.5, 1129.1, 1088.6, 1062.4, 1023.8, 982.5, 916.9, 879.0, 866.8, 847.0, 809.5, 798.3, 775.3, 749.8, 741.0, 688.9, 623.4, 600.3, 572.3, 487.2, 476.1. HRMS m/z found (calcd for $C_{29}H_{21}O_2BF_2NH_4^+$): 486.1978 (486.1977).

Synthesis of SpiroBF₂ via cascade reaction

Into a round bottom flask were added 9,9'-spirobifluorene (500 mg, 1.1 mmol), acetic anhydride (5 mL) and boron trifluoride diethyl etherate (0.8 mL). The reaction mixture was heated to 60 °C and stirred for 5 h. Then the reaction was quenched by adding the reaction mixture dropwise into cold water. The precipitates were washed by water for three times and dried under vacuum. The crude product was purified by column chromatography over silica gel using petroleum ether/dichloromethane (1:1) as eluent to give yellow solids with an isolation yield of 53%. The spiroBF₂ was further purified by three cycles of recrystallization in spectroscopic grade dichloromethane/hexane. Melting point of spiroBF₂ was measured by DSC to be 166 °C. Single crystals of spiroBF₂ were also grown from spectroscopic grade dichloromethane/hexane (CCDC 2049502). The synthetic procedures are the same as our previous study (*Adv. Opt. Mater.*2021, 2100353).

Preparation of afterglow materials by doping BF₂bdk into organic matrices

For the preparation of BF₂bdk-TPO-0.5% powders, 500 μ L BF₂bdk in dichloromethane (1.0 mg/mL) and 100 mg triphenylphosphine oxide (TPO) were added into an agate mortar (diameter = 5 cm). After grinding and solvent evaporating, BF₂bdk-TPO-0.5% powders that show afterglow properties were obtained. The other afterglow materials in this study at different doping concentrations, using different BF₂bdk luminogens and different organic matrices were prepared through similar processes. TP and TPO possess melting points of 78.5-81.5 °C and 154-158 °C, respectively. The BF₂bdk-matrix powders samples were used to prepare the melt-cast

samples. It is found that the molten matrices can dissolve BF₂bdk because of the low doping concentrate ions of BF₂bdk. The melt-cast samples were obtained by heating the powder samples into melt followed by room temperature cooling.

Physical measurements and instrumentation

Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL Fouriertransform NMR spectrometer (400 MHz), including ¹H NMR, ¹³C{¹H} NMR, ¹⁹F{¹H} NMR, ¹¹B{¹H} NMR. Mass spectra were performed on Agilent Technologies 5973N and Thermo Fisher Scientific LTQ FT Ultras mass spectrometer. FT-IR spectra were recorded on a Nicolet AVATAR-360 FT-IR spectrophotometer with a resolution of 4 cm⁻¹. Single-crystal X-ray diffraction analysis was performed on a D8 VENTURE SC-XRD instrument. UV-Vis absorption spectra were recorded on a Techcomp UV1050. UV-vis spectrophotometer. The steady-state and delayed emission spectra were collected by Hitachi FL-4700 fluorescence spectrometer equipped with chopping systems; the delayed emission spectra were obtained with a delay time of approximately 1 ms. The excited state decay profiles in millisecond to second region were collected by Hitachi FL-4700 fluorescence spectrometer equipped with chopping systems. The fluorescence decay profiles in nanosecond region were recorded by using time-correlated single photon counting technique (TCSPC) on a Edinburgh FLS1000 fluorescence spectrometer equipped with a picosecond pulsed diode laser. Photoluminescence quantum yield was measured by a Hamamatsu absolute PL quantum yield measurement system based on a standard protocol (Adv. Mater. 1997, 9, 230). Photographs and videos were captured by HUAWEI P30 cameras. Before the capture, samples were irradiated by a 365 nm UV lamp (5 W) for approximately 5 s at a distance of approximately 15 cm.

TD-DFT calculations

TD-DFT calculations were performed on ORCA 4.2.1 program with B3LYP functional and def2-TZVP(-f) basis set to study the photophysical properties of

molecularly dispersed BF₂bdk in the solid state. Since the afterglow properties are originated from the excited states of molecularly dispersed BF₂bdk in the rigid TPO matrices where intermolecular rotation and vibration are largely restricted, the optimized geometry of BF₂bdk ground state was used for all the TD-DFT calculations. The optimized geometry of BF₂bdk ground state was obtained by a DFT calculation from its single crystal structure using B3LYP functional and def2-TZVP (-f) basis set. Spin-orbit coupling (SOC) matrix elements between the singlet excited states and triplet excited states were calculated with spin-orbit mean-field (SOMF) methods. The obtained electronic structures were analyzed by Multiwfn software. All isosurface maps to show the electron distribution and electronic transitions were rendered by Visual Molecular Dynamics (VMD) software based on the exported files from Multiwfn. (F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, 1327-1332; A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789; B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206; F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592; W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33-38).

Text S1. About BF₂bdk aggregation in organic matrices.

Table S2 summarizes the fluorescence maxima and phosphorescence maxima of the emission spectra of BF₂bdk-TPO-0.01% (Fig. 5A) and BF₂bdk-TPO-0.5% (Fig. 2A) samples. It is found that the emission maxima in the steady-state emission spectra

showed red-shifted behaviors when increasing the doping concentration from 0.01% to 0.5%. These suggest the molecular aggregation of BF₂bdk in organic matrices at 0.5% doping concentrations; at 0.01% doping concentration, the BF₂bdk compounds should be molecularly dispersed in the matrices. In the case of DPFBF₂-TPO, the DPFBF₂-TPO-0.5% powders (λ_F , 463 nm) showed significant red shift in the steady-state emission spectra when compared to the DPFBF₂-TPO-0.01% powders (λ_F , 440 nm). Besides, the ratio of delayed fluorescence band/phosphorescence band of DPFBF₂-TPO-0.5% powders is smaller than that of DPFBF₂-TPO-0.01% powders. These can be explained as: BF₂bdk aggregates cause red shift of steady-state emission spectra but have a less contribution to delayed fluorescence than monomeric dopants, which agree with our previous studies (*Angew. Chem. Int. Ed.* **2021**, *60*, 17138; *Chem. Eng. J.* **2022**, *431*, 134197).

Text S2. Dipole-dipole interactions for the population of triplet excited states.

Because of the dipole-dipole interaction between BF₂bdk's S₁ states and TPO matrices, both ISC and RISC can be enhanced in BF₂bdk-TPO systems, and TADF afterglow has also been switched on. For the population of triplet states in organic systems with the involvement of TADF (*Adv. Mater.* **2014**, *26*, 7931), it can be expressed as $d[T_1]/dt = k_{ISC} [S_1] - (k_{RISC} + k_P + k_{nr}) [T_1]$. In most organic systems (including the BF₂bdk-matrix system in the present study), [S₁] should be much larger than or on the same order of magnitude to [T₁]. Meanwhile, k_{ISC} is much larger than k_{RISC} . Because of these, the equation shows that the increase of k_{ISC} would lead to

relatively large increase of T_1 population, while the increase of k_{RISC} only leads to relatively small decrease of T_1 population. Overall, the dipole-dipole interaction between BF₂bdk's S₁ states and TPO matrices leads to the increase of T_1 population and consequently the emergence of organic afterglow in the present study when TP is oxidized into TPO.

Text S3. TP matrices can also provide rigid microenvironments to inhibit nonradiative deactivation of dopants' triplets and protect dopants' triplets from oxygen quenching in the reported studies (*Angew. Chem. Int. Ed.* **2020**, *59*, 16054). We didn't emphasize this because the BF₂bdk-TP samples showed insignificant organic afterglow. The absence of organic afterglow of BF₂bdk-TP samples is caused by the lack of dipole-dipole interactions between BF₂bdk and TP and consequently inefficient intersystem crossing of BF₂bdk.

Text S4. The comparison between TD-DFT results and experimental results Table S3 summarizes the energy levels of S₁ and T₁ for the comparison between TD-DFT results and experimental results. In this study, TD-DFT calculations were performed on ORCA 4.2.1 program with B3LYP functional and def2-TZVP(-f) basis set. The optimized geometry of BF₂bdk's ground state was used for TD-DFT calculations. In this study (in the case of fluoreneBF₂ and spiroBF₂) and our previous studies on BF₂bdk-matrix systems (*ACS Appl. Mater. Interfaces* **2022**, *14*, 1587), it has been found that BF₂bdk's T₁ energy levels calculated by TD-DFT are close to those estimated from their phosphorescence maxima. Because of this, we use phosphorescence maxima to estimate BF₂bdk's T₁ energy levels in the present study. For BF₂bdk's S₁ energy levels, it has been found that the S₁ energy levels calculated by TD-DFT match the experimental UV-vis absorption maxima in this study (for example, in the case of fluoreneBF₂ and DPFBF₂) and also in our previous studies (*Angew. Chem. Int. Ed.* **2021**, *60*, 17138; *Adv. Funct. Mater.* **2021**, 2110207). So we use these S₁ energy levels and their electron-hole isosurface maps, as well as the UV-vis absorption spectra, to study the absorption properties of BF₂bdk solutions. It is noted that, because of the Stokes shift, the S₁ energy levels estimated from the fluorescence maxima are significantly lower than those calculated by TD-DFT using BF₂bdk's ground state geometry.

Fig. S1. UV-vis spectra of BF₂bdk in different solvents. DCM, EA, ACE and THF refer to dichloromethane, ethyl acetate, acetone and tetrahydrofuran, respectively. In the case of DPEBF₂, fluoreneBF₂ and DPFBF₂, the electron-hole isosurface map of the S₁ states (by TD-DFT calculations, vide infra) showed intramolecular charge transfer plus localized excitation characters. Their UV-vis absorption spectra showed intense absorption bands with some structures, which also suggest the intramolecular charge transfer plus localized excitation characters in DPEBF₂, fluoreneBF₂ and DPFBF₂ systems.

Fig. S2. Room-temperature steady-state emission spectra of BF₂bdk in different solvents. DCM, EA, ACE and THF refer to dichloromethane, ethyl acetate, acetone and tetrahydrofuran, respectively. For the emission spectra of DPEBF₂ solutions, we have repeated the measurements. It turns out that the emission spectra of DPEBF₂ in dichloromethane are broad. DPEBF₂ possess ICT characters. The free-rotating single bonds of O-C-O functional group and C-C bonds between boron(III) diketonate and aromatic moiety allow DPEBF₂ molecule to adopt diverse conformation. These motivate us to propose that DPEBF₂ in dichloromethane shows twisted intramolecular charge transfer (TICT) emission characters (*J. Phys. Chem. C* **2016**, *120*, 22539).

Fig. S3. Excitation spectra of BF₂bdk-TPO samples.

Fig. S4. UV-vis spectra of BF₂bdk-TPO-0.5% samples.

Fig. S5. (A) Photographs of the spiroBF₂-TP-TPO powders with different TPO contents. (B) Delayed emission (1 ms delay) spectra of spiroBF₂-TP-TPO samples with different TPO contents. TP plus TPO matrices with different TPO contents (0%, 10%, 25%, 50%, 75% and 100%) have been used to accommodate BF₂bdk. It is found that when the TPO contents increase to 25%, the spiroBF₂-TP-TPO powders exhibited room-temperature afterglow which can be observed by human eyes in a dark room.

Fig. S6. S_1 and T_1 levels of DPEBF₂ with different conformation obtained by TD-DFT calculation. The conformation is defined by the twisted angles (that is, the dihedral angles) α and β . In the main text, the fluorescence maxima of DPEBF₂ showed insignificant change in TPO and TP (Fig. 5); it is proposed that twist-induced spectral shifts offset the effect of dipole-dipole interactions. Dipole-dipole interactions between TPO and DPEBF₂'s S₁ state lead to red-shifted fluorescence. By TD-DFT calculations, it is found that the increase of twist angle α leads to the increase of S₁ levels and insignificant change of T₁ levels, while the increase of twist angle β leads to the decrease of S₁ levels and increase of T₁ levels. Since the phosphorescence maxima in the delayed emission spectra of DPEBF₂-TPO-0.01% powders were similar to those of DPEBF₂-TP-0.01% powders (Fig. 5). We propose that DPEBF₂ in TPO matrices possesses a larger twist angle α , that is, a more twisted conformation

than in TP matrices; the twisted conformation lead to blue-shifted fluorescence. Therefore, in the case of DPEBF₂, the twist-induced spectral shifts offset the effect of dipole-dipole interactions. It is noted that, although the S_1 and T_1 levels by TD-DFT calculations may be different from those estimated from emission spectra, the trend of S_1 and T_1 levels by systematically varying the twisted angles can still be used to interpret the spectral observations in DPEBF₂-TPO and DPEBF₂-TP samples. We think it is understandable that this trend of S_1 and T_1 levels can still support our statement "it is proposed that twist-induced spectral shifts offset the effect of dipole-dipole interactions" in the main text.

Fig. S7. (A) Variable-temperature steady-state and (B) delayed emission (1 ms delay) spectra of DPFBF₂-TPO-0.01% powders.

Fig. S8. The TD-DFT calculated results of DPEBF₂ singlet and triplet excited states. The ΔE_{ST} value is estimated from fluorescence and phosphorescence maxima in Fig. 5 to be 0.46 eV. The energy level of T₂ state is sandwiched between S₁ and T₁. Therefore, the S₁-to-T₆ ISC channel with relatively small singlet-triplet energy gap and relatively large SOCME of 8.46 cm⁻¹ can mediate the intersystem crossing of DPEBF₂ system.

Fig. S9. The TD-DFT calculated results of fluoreneBF₂ singlet and triplet excited states. The ΔE_{ST} value is estimated from fluorescence and phosphorescence maxima in Fig. 5 to be 0.52 eV. The energy level of T₂ state should be sandwiched between S₁ and T₁. Therefore, the S₁-to-T₂ ISC channel with relatively small singlet-triplet energy gap and relatively large SOCME of 1.17 cm⁻¹ can mediate the intersystem crossing of fluoreneBF₂ system.

Fig. S10. The TD-DFT calculated results of DPFBF₂ singlet and triplet excited states. The TD-DFT calculated results of fluoreneBF₂ singlet and triplet excited states. The ΔE_{ST} value is estimated from fluorescence and phosphorescence maxima in Fig. 5 to be 0.48 eV. The energy level of T₂ state should be sandwiched between S₁ and T₁. Therefore, the S₁-to-T₅ ISC channel with relatively small singlet-triplet energy gap and relatively large SOCME of 0.86 cm⁻¹ can mediate the intersystem crossing of DPFBF₂ system.

Fig. S11. The TD-DFT calculated results of spiroBF₂ singlet and triplet excited states. The S_1 -to- T_3 ISC channel with relatively small singlet-triplet energy gap and relatively large SOCME of 0.31 cm⁻¹ can mediate the intersystem crossing of spiroBF₂ system.

Fig. S12. Single crystal structures of (A) DPEBF₂, (B) fluoreneBF₂ and (C) spiroBF₂.

Fig. S13. ¹H NMR spectra of DPEBF₂.

Fig. S14. ¹³C NMR spectra of DPEBF₂.

Fig. S15. ¹⁹F NMR spectra of DPEBF₂.

Fig. S16. ¹¹B NMR spectra of DPEBF₂.

Card Serial Number: E202066

Sample Serial Number: Wgm-EBM

Operator: Songw Date: 2020/10/26

Operation Mode: ESI Positive Ion Mode

Elemental composition search on mass 324.09

m/z= 319.09-329.09 RDB Composition Delta m/z Theo. equiv. Mass (ppm) 9.5 C16 H13 O3 10B F2 Na 324.0854 324.0854 0.05 13.5 C19 H12 O2 10B F Na 3.58 324.0843 14.0 C19 H13 O2 N2 Na 324.0869 -4.55

Fig. S17. LRMS and HRMS spectra of DPEBF₂.

Fig. S18. FT-IR spectra of DPEBF₂.

Fig. S19. ¹H NMR spectra of DPFBF₂.

-25 -20 -15 -10 139.07 -5 --139.00--0 F00 -96 -139.0 -139.1 Chemical shift -138.5 -138.6 -138.8 -138.7 -138.9 -139.2 -139.3 -139.4 -139.5 -139.6 -139.7 Fig. S21. ¹⁹F NMR spectra of DPFBF₂.

Fig. S22. ¹¹B NMR spectra of DPFBF₂.

Fig. S23. MS spectra of DPFBF₂.

Fig. S24. FT-IR spectra of DPFBF₂.

Fig. S25. HPLC spectrum of DPEBF₂ UV absorption was monitored at 376 nm.

Fig. S26. The fluorescence decay profiles of BF₂bdk in dichloromethane.

Entry	$\lambda_{abs}/nm ~(\epsilon \times 10^{-4}/M^{-1} cm^{-1})$	$\lambda_{\rm em}/{\rm nm}$	τ/ns
DPEBF ₂ in dichloromethane	358 (3.05)	435	1.55
DPEBF ₂ in ethyl acetate	346 (3.09)	395	1.51
DPEBF ₂ in acetone	349 (3.25)	392	2.13
DPEBF ₂ in tetrahydrofuran	347 (3.21)	396	1.62
DPFBF ₂ in dichloromethane	384 (2.16)	440	2.40
DPFBF ₂ in ethyl acetate	382 (1.27)	424	2.05
DPFBF ₂ in acetone	382 (4.55)	438	2.52
DPFBF ₂ in tetrahydrofuran	384 (2.78)	428	1.78

Table S1. Photophysical data of BF₂bdk compounds at room temperature.

Table S2. Photophysical data of BF_2bdk -TPO-0.01% and BF_2bdk -TPO-0.5% powders at room temperature.

Entry	$\lambda_{\rm F}^{\prime}/{ m nm}$	$\lambda_{\rm p}/{\rm nm}$
DPEBF ₂ -TPO-0.5%	412	486
DPEBF ₂ -TPO-0.01%	410	485
fluoreneBF ₂ -TPO-0.5%	440	528
fluoreneBF ₂ -TPO-0.01%	435	531
DPFBF ₂ -TPO-0.5%	463	531
DPFBF2-TPO-0.01%	440	530
SpiroBF ₂ -TPO-0.5%	450	530
SpiroBF2-TPO-0.01%	445	529

1								
Entry	BF2 DT-	2bdk DFT	BF2bdk-0 melt-cast	.5%-TPO samples	BF ₂ bdk-0	.5%-TPO ders	BF2bdk-0. pow	.01%-TPO /ders
	S ₁ /eV	T_1/eV	S_1/eV	T_1/eV	S_1/eV	T_1/eV	S ₁ /eV	T_1/eV
DPEBF ₂	4.01	2.83	2.99	2.55	3.00	2.55	3.02	2.56
FluoreneBF ₂	3.40	2.45	2.79	2.36	2.82	2.35	2.85	2.33
DPFBF ₂	3.31	2.65	2.80	2.37	2.68	2.34	2.82	2.34
SpiroBF ₂	2.91	2.46	2.76	2.36	2.76	2.34	2.78	2.34

Table S3. Comparison of the S_1 and T_1 energy levels between TD-DFT results and experimental results.

 Table S4. Crystal data and structure refinement for d8v20637 (DPEBF₂).

Identification code	d8v20637	
Empirical formula	C16 H13 B F2 O3	
Formula weight	302.07	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P n m a	
Unit cell dimensions	a = 28.975(2) Å	α= 90°.
	b = 7.2581(5) Å	β= 90°.
	c = 6.7960(5) Å	$\gamma = 90^{\circ}$.
Volume	1429.22(18) Å ³	
Z	4	
Density (calculated)	1.404 Mg/m ³	
Absorption coefficient	0.112 mm ⁻¹	
F(000)	624	
Crystal size	0.200 x 0.140 x 0.110 mm	3
Theta range for data collection	3.139 to 25.995°.	
Index ranges	-35<=h<=27, -8<=k<=8, -	8<=l<=8
Reflections collected	6622	
Independent reflections	1505 [R(int) = 0.0686]	
Completeness to theta = 25.242°	98.9 %	

Absorption correction Max. and min. transmission	Semi-empirical from equivalents 0.7456 and 0.4799
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1505 / 0 / 126
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	R1 = 0.0452, wR2 = 0.1168 R1 = 0.0573, wR2 = 0.1296 0.053(12)
Largest diff. peak and hole	0.198 and -0.181 e.Å ⁻³

Table S5. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² x10³) for d8v20637 (DPEBF₂). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
F(1)	4170(1)	5954(1)	9911(1)	69(1)
O(1)	3856(1)	7500	7237(2)	58(1)
O(2)	4685(1)	7500	7896(2)	61(1)
O(3)	6646(1)	7500	4142(3)	90(1)
C(1)	3548(1)	7500	4042(4)	65(1)
C(2)	3954(1)	7500	5378(3)	47(1)
C(3)	4399(1)	7500	4715(3)	50(1)
C(4)	4762(1)	7500	6030(3)	42(1)
C(5)	5250(1)	7500	5459(3)	42(1)
C(6)	5389(1)	7500	3500(3)	49(1)
C(7)	5852(1)	7500	2999(3)	51(1)
C(8)	6177(1)	7500	4476(3)	55(1)
C(9)	6048(1)	7500	6428(4)	67(1)
C(10)	5588(1)	7500	6911(3)	56(1)
C(11)	6818(1)	7500	2227(4)	62(1)
C(12)	6920(1)	5865(3)	1331(3)	73(1)
C(13)	7131(1)	5873(3)	-481(3)	77(1)
C(14)	7239(1)	7500	-1379(4)	74(1)
B(1)	4218(1)	7500	8786(4)	51(1)

F(1)-B(1)	1.3649(16)	
O(1)-C(2)	1.295(3)	
O(1)-B(1)	1.487(3)	
O(2)-C(4)	1.288(2)	
O(2)-B(1)	1.480(3)	
O(3)-C(8)	1.378(3)	
O(3)-C(11)	1.393(3)	
C(1)-C(2)	1.487(3)	
C(1)-H(1A)	0.9600	
C(1)-H(1B)	0.9600	
C(1)-H(1C)	0.9600	
C(2)-C(3)	1.366(3)	
C(3)-C(4)	1.381(3)	
C(3)-H(3)	0.9300	
C(4)-C(5)	1.464(3)	
C(5)-C(6)	1.391(3)	
C(5)-C(10)	1.391(3)	
C(6)-C(7)	1.384(3)	
C(6)-H(6)	0.9300	
C(7)-C(8)	1.377(3)	
C(7)-H(7)	0.9300	
C(8)-C(9)	1.378(3)	
C(9)-C(10)	1.374(3)	
C(9)-H(9)	0.9300	
C(10)-H(10)	0.9300	
C(11)-C(12)#1	1.366(2)	
C(11)-C(12)	1.366(2)	
C(12)-C(13)	1.375(3)	
C(12)-H(12)	0.9300	
C(13)-C(14)	1.366(3)	
С(13)-Н(13)	0.9300	
C(14)-C(13)#1	1.366(3)	
C(14)-H(14)	0.9300	
B(1)-F(1)#1	1.3648(16)	
C(2)-O(1)-B(1)	122.37(18)	
C(4)-O(2)-B(1)	124.19(18)	

Table S6. Bond lengths [Å] and angles $[\circ]$ for d8v20637 (DPEBF₂).

C(8)-O(3)-C(11)	120.32(18)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-C(3)	122.0(2)
O(1)-C(2)-C(1)	114.9(2)
C(3)-C(2)-C(1)	123.1(2)
C(2)-C(3)-C(4)	120.4(2)
C(2)-C(3)-H(3)	119.8
C(4)-C(3)-H(3)	119.8
O(2)-C(4)-C(3)	120.22(19)
O(2)-C(4)-C(5)	115.47(18)
C(3)-C(4)-C(5)	124.31(19)
C(6)-C(5)-C(10)	118.3(2)
C(6)-C(5)-C(4)	122.25(19)
C(10)-C(5)-C(4)	119.43(19)
C(7)-C(6)-C(5)	121.1(2)
C(7)-C(6)-H(6)	119.4
C(5)-C(6)-H(6)	119.4
C(8)-C(7)-C(6)	118.9(2)
C(8)-C(7)-H(7)	120.5
C(6)-C(7)-H(7)	120.5
C(7)-C(8)-O(3)	123.7(2)
C(7)-C(8)-C(9)	121.1(2)
O(3)-C(8)-C(9)	115.2(2)
C(10)-C(9)-C(8)	119.5(2)
C(10)-C(9)-H(9)	120.2
C(8)-C(9)-H(9)	120.2
C(9)-C(10)-C(5)	121.0(2)
C(9)-C(10)-H(10)	119.5
C(5)-C(10)-H(10)	119.5
C(12)#1-C(11)-C(12)	120.6(2)
C(12)#1-C(11)-O(3)	119.56(12)
C(12)-C(11)-O(3)	119.56(12)
C(11)-C(12)-C(13)	119.4(2)

С(11)-С(12)-Н(12)	120.3
C(13)-C(12)-H(12)	120.3
C(14)-C(13)-C(12)	120.4(2)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(13)#1-C(14)-C(13)	119.7(3)
C(13)#1-C(14)-H(14)	120.2
C(13)-C(14)-H(14)	120.2
F(1)#1-B(1)-F(1)	110.56(18)
F(1)#1-B(1)-O(2)	108.75(14)
F(1)-B(1)-O(2)	108.74(14)
F(1)#1-B(1)-O(1)	108.97(14)
F(1)-B(1)-O(1)	108.98(14)
O(2)-B(1)-O(1)	110.85(17)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z

Table S7. Crystal data and structure refinement for $mo_d8v20682_0m$ (fluoreneBF₂).

Identification code	mo_d8v20682_0m
Empirical formula	C19 H17 B F2 O2
Formula weight	326.13
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/m
Unit cell dimensions	$a = 8.1515(6) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 7.1248(6) \text{ Å}$ $\beta = 103.612(2)^{\circ}$
	$c = 14.2590(11) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	804.87(11) Å ³
Z	2
Density (calculated)	1.346 Mg/m ³
Absorption coefficient	0.100 mm ⁻¹
F(000)	340
Crystal size	0.200 x 0.150 x 0.110 mm ³

Theta range for data collection	2.644 to 25.996°.
Index ranges	-10<=h<=10, -8<=k<=8, -15<=l<=17
Reflections collected	12022
Independent reflections	1695 [R(int) = 0.0628]
Completeness to theta = 25.242°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5089
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1695 / 0 / 142
Goodness-of-fit on F ²	1.054
Final R indices [I>2sigma(I)]	R1 = 0.0487, $wR2 = 0.1253$
R indices (all data)	R1 = 0.0568, $wR2 = 0.1334$
Extinction coefficient	0.11(3)
Largest diff. peak and hole	0.302 and -0.273 e.Å ⁻³

Table S8. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for mo_d8v20682_0m (fluoreneBF₂). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
F(1)	2122(2)	5927(3)	8594(1)	128(1)
O(1)	3071(2)	7500	7424(1)	59(1)
O(2)	4590(3)	7500	9119(1)	77(1)
C(1)	1236(2)	7500	3646(1)	38(1)
C(2)	2083(3)	7500	2803(1)	41(1)
C(3)	1337(3)	7500	1824(2)	57(1)
C(4)	2368(4)	7500	1175(2)	64(1)
C(5)	4099(4)	7500	1491(2)	60(1)
C(6)	4863(3)	7500	2466(2)	49(1)
C(7)	3838(3)	7500	3118(1)	38(1)
C(8)	4267(2)	7500	4175(1)	34(1)
C(9)	5823(3)	7500	4827(2)	42(1)

C(10)	5876(3)	7500	5800(2)	43(1)
C(11)	4406(3)	7500	6138(1)	36(1)
C(12)	2833(2)	7500	5475(1)	35(1)
C(13)	2772(2)	7500	4496(1)	33(1)
C(14)	140(2)	5749(2)	3639(1)	51(1)
C(15)	4501(3)	7500	7182(1)	40(1)
C(16)	5990(3)	7500	7881(2)	56(1)
C(17)	5978(4)	7500	8842(2)	56(1)
C(18)	7556(4)	7500	9626(2)	82(1)
B(1)	2925(4)	7500	8440(2)	63(1)

 $\label{eq:constraint} \textbf{Table S9.} \ Bond \ lengths \ [\text{\AA}] \ and \ angles \ [^\circ] \ for \ mo_d8v20682_0m \ (fluoreneBF_2).$

F(1)-B(1)	1.342(2)
O(1)-C(15)	1.291(3)
O(1)-B(1)	1.483(3)
O(2)-C(17)	1.283(3)
O(2)-B(1)	1.470(4)
C(1)-C(2)	1.521(3)
C(1)-C(13)	1.524(3)
C(1)-C(14)	1.5333(19)
C(1)-C(14)#1	1.5333(19)
C(2)-C(3)	1.384(3)
C(2)-C(7)	1.395(3)
C(3)-C(4)	1.389(3)
C(3)-H(3)	0.9300
C(4)-C(5)	1.377(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.383(3)
C(5)-H(5)	0.9300
C(6)-C(7)	1.390(3)
C(6)-H(6)	0.9300
C(7)-C(8)	1.464(3)
C(8)-C(9)	1.385(3)
C(8)-C(13)	1.399(3)
C(9)-C(10)	1.378(3)

C(9)-H(9)	0.9300
C(10)-C(11)	1.392(3)
C(10)-H(10)	0.9300
C(11)-C(12)	1.403(3)
C(11)-C(15)	1.472(3)
C(12)-C(13)	1.385(3)
C(12)-H(12)	0.9300
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-C(16)	1.378(3)
C(16)-C(17)	1.372(3)
C(16)-H(16)	0.9300
C(17)-C(18)	1.492(3)
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
B(1)-F(1)#1	1.342(2)
C(15)-O(1)-B(1)	123.16(19)
C(17)-O(2)-B(1)	122.83(19)
C(2)-C(1)-C(13)	100.85(15)
C(2)-C(1)-C(14)	111.52(10)
C(13)-C(1)-C(14)	111.96(10)
C(2)-C(1)-C(14)#1	111.52(10)
C(13)-C(1)-C(14)#1	111.96(10)
C(14)-C(1)-C(14)#1	108.90(17)
C(3)-C(2)-C(7)	119.96(19)
C(3)-C(2)-C(1)	128.55(19)
C(7)-C(2)-C(1)	111.48(16)
C(2)-C(3)-C(4)	118.7(2)
C(2)-C(3)-H(3)	120.6
C(4)-C(3)-H(3)	120.6
C(5)-C(4)-C(3)	121.1(2)
C(5)-C(4)-H(4)	119.5
C(3)-C(4)-H(4)	119.5
C(4)-C(5)-C(6)	120.9(2)
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-H(5)	119.6

C(5)-C(6)-C(7)	118.3(2)
C(5)-C(6)-H(6)	120.9
C(7)-C(6)-H(6)	120.9
C(6)-C(7)-C(2)	121.10(19)
C(6)-C(7)-C(8)	130.8(2)
C(2)-C(7)-C(8)	108.12(16)
C(9)-C(8)-C(13)	120.64(17)
C(9)-C(8)-C(7)	130.60(18)
C(13)-C(8)-C(7)	108.76(17)
C(10)-C(9)-C(8)	118.89(19)
C(10)-C(9)-H(9)	120.6
C(8)-C(9)-H(9)	120.6
C(9)-C(10)-C(11)	121.52(19)
C(9)-C(10)-H(10)	119.2
C(11)-C(10)-H(10)	119.2
C(10)-C(11)-C(12)	119.44(18)
C(10)-C(11)-C(15)	120.33(18)
C(12)-C(11)-C(15)	120.23(18)
C(13)-C(12)-C(11)	119.29(18)
C(13)-C(12)-H(12)	120.4
C(11)-C(12)-H(12)	120.4
C(12)-C(13)-C(8)	120.21(17)
C(12)-C(13)-C(1)	129.00(17)
C(8)-C(13)-C(1)	110.78(16)
C(1)-C(14)-H(14A)	109.5
C(1)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(1)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
O(1)-C(15)-C(16)	120.22(19)
O(1)-C(15)-C(11)	115.75(18)
C(16)-C(15)-C(11)	124.0(2)
C(17)-C(16)-C(15)	120.7(2)
C(17)-C(16)-H(16)	119.6
C(15)-C(16)-H(16)	119.6
O(2)-C(17)-C(16)	121.4(2)
O(2)-C(17)-C(18)	115.9(2)

C(16)-C(17)-C(18)	122.7(3)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
F(1)#1-B(1)-F(1)	113.4(3)
F(1)#1-B(1)-O(2)	107.65(16)
F(1)-B(1)-O(2)	107.65(16)
F(1)#1-B(1)-O(1)	108.29(14)
F(1)-B(1)-O(1)	108.29(14)
O(2)-B(1)-O(1)	111.7(2)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z

Table S10. Crystal data and structure refine	ement for mo_d8v20638_0	m (SpiroBF ₂).
Identification code	mo_d8v20638_0m	
Empirical formula	C29 H19 B F2 O2	
Formula weight	448.25	
Temperature	293.4 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 10.0422(5) Å	<i>α</i> = 90°.
	b = 18.3455(7) Å	β=99.116(2)°.
	c = 14.3713(7) Å	γ= 90°.
Volume	2614.2(2) Å ³	
Z	4	
Density (calculated)	1.139 Mg/m ³	
Absorption coefficient	0.080 mm ⁻¹	
F(000)	928	
Crystal size	0.2 x 0.16 x 0.12 mm ³	

Theta range for data collection	2.565 to 27.484°.
Index ranges	-12<=h<=13, -23<=k<=23, -18<=l<=14
Reflections collected	14395
Independent reflections	5917 [R(int) = 0.0432]
Completeness to theta = 25.242°	99.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5811
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5917 / 0 / 308
Goodness-of-fit on F ²	1.016
Final R indices [I>2sigma(I)]	R1 = 0.0561, $wR2 = 0.1552$
R indices (all data)	R1 = 0.0958, wR2 = 0.1866
Extinction coefficient	n/a
Largest diff. peak and hole	0.171 and -0.167 e.Å ⁻³

Table S11. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for mo_d8v20638_0m (SpiroBF₂). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
F(1)	2481(1)	5510(1)	4187(1)	86(1)
F(2)	2584(2)	5184(1)	2691(1)	102(1)
O(1)	3471(1)	4415(1)	3904(1)	76(1)
O(2)	4518(1)	5584(1)	3646(1)	72(1)
C(1)	4697(3)	3324(1)	4181(2)	80(1)
C(2)	4641(2)	4114(1)	3941(1)	58(1)
C(3)	5739(2)	4506(1)	3793(2)	59(1)
C(4)	5666(2)	5253(1)	3676(1)	50(1)
C(5)	6829(2)	5721(1)	3614(1)	50(1)
C(6)	8114(2)	5428(1)	3633(2)	65(1)
C(7)	9211(2)	5865(1)	3567(2)	69(1)
C(8)	9023(2)	6616(1)	3494(1)	52(1)

C(9)	9982(2)	7208(1)	3425(1)	54(1)	
C(10)	11360(2)	7194(1)	3407(2)	72(1)	
C(11)	12032(2)	7850(1)	3364(2)	80(1)	
C(12)	11351(2)	8504(1)	3338(2)	75(1)	
C(13)	9974(2)	8520(1)	3352(1)	63(1)	
C(14)	9290(2)	7866(1)	3397(1)	51(1)	
C(15)	7801(2)	7746(1)	3438(1)	48(1)	
C(16)	7746(2)	6915(1)	3492(1)	47(1)	
C(17)	6648(2)	6479(1)	3539(1)	49(1)	
C(18)	6838(2)	8065(1)	2614(1)	52(1)	
C(19)	6806(2)	7940(1)	1663(2)	65(1)	
C(20)	5805(2)	8296(1)	1032(2)	79(1)	
C(21)	4886(3)	8751(1)	1351(2)	83(1)	
C(22)	4911(2)	8870(1)	2294(2)	76(1)	
C(23)	5905(2)	8528(1)	2934(2)	61(1)	
C(24)	6193(2)	8556(1)	3963(2)	65(1)	
C(25)	5591(3)	8941(1)	4623(2)	93(1)	
C(26)	6117(4)	8882(2)	5559(2)	109(1)	
C(27)	7210(4)	8449(2)	5854(2)	96(1)	
C(28)	7813(3)	8060(1)	5216(2)	72(1)	
C(29)	7306(2)	8117(1)	4273(1)	55(1)	
B(1)	3229(2)	5178(1)	3596(2)	68(1)	

Table S12. Bond lengths [Å] and angles [°] for mo_d8v20638_0m (SpiroBF₂).

F(1)-B(1)	1.363(3)
F(2)-B(1)	1.359(3)
O(1)-C(2)	1.291(2)
O(1)-B(1)	1.477(3)
O(2)-C(4)	1.297(2)
O(2)-B(1)	1.485(3)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(1)-C(2)	1.490(3)
C(2)-C(3)	1.360(3)
C(3)-H(3)	0.9300

C(3)-C(4)	1.382(2)
C(4)-C(5)	1.463(2)
C(5)-C(6)	1.395(2)
C(5)-C(17)	1.405(2)
C(6)-H(6)	0.9300
C(6)-C(7)	1.379(3)
C(7)-H(7)	0.9300
C(7)-C(8)	1.393(3)
C(8)-C(9)	1.465(2)
C(8)-C(16)	1.394(2)
C(9)-C(10)	1.389(3)
C(9)-C(14)	1.391(3)
C(10)-H(10)	0.9300
C(10)-C(11)	1.385(3)
C(11)-H(11)	0.9300
C(11)-C(12)	1.378(3)
C(12)-H(12)	0.9300
C(12)-C(13)	1.387(3)
C(13)-H(13)	0.9300
C(13)-C(14)	1.390(2)
C(14)-C(15)	1.522(2)
C(15)-C(16)	1.527(2)
C(15)-C(18)	1.522(3)
C(15)-C(29)	1.530(2)
C(16)-C(17)	1.372(2)
C(17)-H(17)	0.9300
C(18)-C(19)	1.381(3)
C(18)-C(23)	1.395(3)
C(19)-H(19)	0.9300
C(19)-C(20)	1.405(3)
C(20)-H(20)	0.9300
C(20)-C(21)	1.376(4)
C(21)-H(21)	0.9300
C(21)-C(22)	1.368(4)
C(22)-H(22)	0.9300
C(22)-C(23)	1.395(3)
C(23)-C(24)	1.462(3)
C(24)-C(25)	1.395(3)

C(24)-C(29)	1.393(3)
C(25)-H(25)	0.9300
C(25)-C(26)	1.369(4)
C(26)-H(26)	0.9300
C(26)-C(27)	1.366(4)
C(27)-H(27)	0.9300
C(27)-C(28)	1.376(3)
C(28)-H(28)	0.9300
C(28)-C(29)	1.374(3)
C(2)-O(1)-B(1)	121.51(16)
C(4)-O(2)-B(1)	122.08(15)
H(1A)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
O(1)-C(2)-C(1)	115.19(17)
O(1)-C(2)-C(3)	121.51(17)
C(3)-C(2)-C(1)	123.27(19)
C(2)-C(3)-H(3)	119.5
C(2)-C(3)-C(4)	120.96(18)
C(4)-C(3)-H(3)	119.5
O(2)-C(4)-C(3)	119.81(16)
O(2)-C(4)-C(5)	115.95(15)
C(3)-C(4)-C(5)	124.20(17)
C(6)-C(5)-C(4)	121.17(15)
C(6)-C(5)-C(17)	119.43(16)
C(17)-C(5)-C(4)	119.39(15)
C(5)-C(6)-H(6)	119.3
C(7)-C(6)-C(5)	121.40(17)
C(7)-C(6)-H(6)	119.3
C(6)-C(7)-H(7)	120.6
C(6)-C(7)-C(8)	118.75(17)
C(8)-C(7)-H(7)	120.6
C(7)-C(8)-C(9)	130.90(17)
C(7)-C(8)-C(16)	120.22(16)

C(16)-C(8)-C(9)	108.88(16)
C(10)-C(9)-C(8)	131.05(18)
C(10)-C(9)-C(14)	120.65(18)
C(14)-C(9)-C(8)	108.28(16)
C(9)-C(10)-H(10)	120.7
C(11)-C(10)-C(9)	118.6(2)
С(11)-С(10)-Н(10)	120.7
С(10)-С(11)-Н(11)	119.5
C(12)-C(11)-C(10)	121.0(2)
С(12)-С(11)-Н(11)	119.5
С(11)-С(12)-Н(12)	119.7
C(11)-C(12)-C(13)	120.6(2)
С(13)-С(12)-Н(12)	119.7
С(12)-С(13)-Н(13)	120.5
C(12)-C(13)-C(14)	119.0(2)
С(14)-С(13)-Н(13)	120.5
C(9)-C(14)-C(15)	111.29(15)
C(13)-C(14)-C(9)	120.17(18)
C(13)-C(14)-C(15)	128.53(18)
C(14)-C(15)-C(16)	100.94(14)
C(14)-C(15)-C(18)	114.92(14)
C(14)-C(15)-C(29)	114.18(15)
C(16)-C(15)-C(29)	112.61(14)
C(18)-C(15)-C(16)	113.62(13)
C(18)-C(15)-C(29)	101.16(14)
C(8)-C(16)-C(15)	110.61(15)
C(17)-C(16)-C(8)	121.12(15)
C(17)-C(16)-C(15)	128.27(16)
C(5)-C(17)-H(17)	120.5
C(16)-C(17)-C(5)	119.05(16)
С(16)-С(17)-Н(17)	120.5
C(19)-C(18)-C(15)	128.10(17)
C(19)-C(18)-C(23)	121.07(19)
C(23)-C(18)-C(15)	110.83(17)
C(18)-C(19)-H(19)	121.2
C(18)-C(19)-C(20)	117.6(2)
C(20)-C(19)-H(19)	121.2
C(19)-C(20)-H(20)	119.5

C(21)-C(20)-C(19)	121.1(2)
С(21)-С(20)-Н(20)	119.5
C(20)-C(21)-H(21)	119.4
C(22)-C(21)-C(20)	121.3(2)
С(22)-С(21)-Н(21)	119.4
С(21)-С(22)-Н(22)	120.7
C(21)-C(22)-C(23)	118.7(2)
C(23)-C(22)-H(22)	120.7
C(18)-C(23)-C(22)	120.3(2)
C(18)-C(23)-C(24)	108.61(18)
C(22)-C(23)-C(24)	131.1(2)
C(25)-C(24)-C(23)	132.0(2)
C(29)-C(24)-C(23)	108.87(17)
C(29)-C(24)-C(25)	119.1(2)
C(24)-C(25)-H(25)	120.4
C(26)-C(25)-C(24)	119.1(3)
C(26)-C(25)-H(25)	120.4
C(25)-C(26)-H(26)	119.4
C(27)-C(26)-C(25)	121.1(3)
C(27)-C(26)-H(26)	119.4
C(26)-C(27)-H(27)	119.6
C(26)-C(27)-C(28)	120.7(3)
C(28)-C(27)-H(27)	119.6
C(27)-C(28)-H(28)	120.5
C(29)-C(28)-C(27)	119.0(2)
C(29)-C(28)-H(28)	120.5
C(24)-C(29)-C(15)	110.48(17)
C(28)-C(29)-C(15)	128.64(19)
C(28)-C(29)-C(24)	120.88(19)
F(1)-B(1)-O(1)	108.49(19)
F(1)-B(1)-O(2)	107.99(19)
F(2)-B(1)-F(1)	111.5(2)
F(2)-B(1)-O(1)	109.0(2)
F(2)-B(1)-O(2)	108.8(2)
O(1)-B(1)-O(2)	111.06(18)

Symmetry transformations used to generate equivalent atoms: