Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Support Information

Fig. S1 The XRD patterns of the $ZrO_2/(1-x)KNNS-xBNZ$ ceramics with different *x* contents: x = 0.01, x = 0.02, x = 0.03, x = 0.035, x = 0.045 and x = 0.05.

Fig. S2 Corresponding element distribution mapping of x = 0.04 ceramics.

Fig. S3 (a-b) The Vickers indentation and cracks of (1-x)KNNS-*x*BNZ ceramics with x = 0.00 and x = 0.04.

Fig. S4 The normalized *in situ* d_{33} as a function of the temperature for x = 0.00 and x = 0.04 samples.

Fig. S5 The ε_r -*T* curves of (1-*x*)KNNS-*x*BNZ ceramics measured between -80-200 °C.

Fig. S6 The stress distribution of the x = 0.04 sample between the KNN-based ceramics and ZrO_2 at different temperature.

Fig. S7 The diffusion factor γ as a function of *x*.

Fig. S8 The temperature dependence of $tan\delta$ measured from 25-400 °C of all samples.

Fig. S9 The relationship between the open circuit voltage (V_{open}) and frequency of the cantilever PEH prepared by the x = 0.00 and x = 0.04 samples.