Electronic Supplementary Information

Hydrogels Endow the Precise Growth Tracks of Plasmonic Gold Nanoparticles for Mercury Analysis

Hang Zhang, Jun Jiang Luo, Zhe Sun, Hao Lin Zou, Hong Qun Luo, Nian Bing Li,* Bang Lin Li*

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China. Email: <u>chemlibl@swu.edu.cn</u> (B. L. Li); <u>linb@swu.edu.cn</u> (N. B. Li)

This PDF file includes seven figures, two tables, and nine pages:

Figure S1 Figure S2 Figure S3 Figure S4 Figure S5 Figure S6 Figure S7 Table S1 Table S2

Supporting References

Figure S1.

Fig. S1. The pictures showing the different nano-staining reactions of $HAuCl_4$ and cysteine in various concentrations of agarose. The concentrations of cysteine, $HAuCl_4$ and Hg^{2+} ions were 0.2 mM, 1.0 mM and 100 nM, respectively.

Figure S2.

Fig. S2. Scanning electronic microscope (SEM) pictures showing the diversity of pore sizes in hydrogels which are prepared from different concentrations of agarose (0.4%, 0.5%, 0.6%, 0.8%).

Figure S3.

Fig. S3. Time-resolved absorption spectra for recording the formation process of gold NPs with different reduction reagents of L-cysteine (a, b) and methionine (c, d) in agarose hydrogel (a, c) and aqueous (b, d) phases. The concentrations of L-cysteine and methionine are 0.5 mM.

Figure S4.

Fig. S4. Time-resolved absorption spectra for recording the formation process of gold NPs with different reduction reagents of sodium citrate (a, b) and ascorbic acid (c, d) in agarose hydrogel (a, c) and aqueous (b, d) phases. The concentrations of sodium citrate and ascorbic acid are 0.5 mM.

Figure S5.

Fig. S5. Real pictures displayed the different growth processes of gold NPs in two reaction phases, which were incubated in the absence and presence of Hg^{2+} ions for diverse standing times (0, 3, and 18 h)

Fig. S6. The size distribution of gold NPs in the nano-staining hydrogels, which are generated from 0.5 μ M (a) and 1.0 μ M (b) Hg²⁺ ions, respectively.

Figure S7.

Fig. S7. Fourier transform infrared (FTIR) spectra of diverse forms of agarose. (a) the agarose powders. (b) the agarose aerogel. (c) the cysteine doped agarose aerogel. (d) the agarose aerogel after the treatments of nano-staining sensing strategies. The reaction had no effects to the chemical composition of agarose.

Sample ^a	Original	Added Hg ²⁺	Nano-staining	Recovery	RSD
	concentration	concentration	hydrogel assay	(%)	
	(nM)	(nM) ^{<i>b</i>}	(nM) °		
Tap water	0.00	200.00	194.32	97.16	6.48
	0.00	400.00	465.60	116.40	4.10
	0.00	600.00	555.60	92.60	5.59

Table S1. Measurements of Hg^{2+} ions in real samples using the nano-staining hydrogel assay.

^{*a*} Measured five times. ^{*b*} Added amount of Hg^{2+} ions in the environmental samples. ^{*c*} Measured results based on our developed method.

Recognition	Sensing	LOD	Other sensing Ref.
nechanism	phase		performance
			(Stability <i>et al.</i>)
Lysine can strongly	Aqueous	2.9	Weak, and Sener et
nteract with Hg ²⁺ ions	solutions	nM	influenced by the $al.^{S1}$
			dispersion of
			nano-probes
Thymine-Hg ²⁺ -	Aqueous	3.0	Weak, and Xue et
hymine coordination	solutions	μΜ	influenced by al. ^{S2}
hemistry			DNA
			modification and
			dispersion of
			AuNPs
The addition of Hg ²⁺	Aqueous	200	Weak, and Qi et al.
nduces the formation	solutions	nM	influenced by the ^{S3}
of a partition layer on			dispersion of
Au nanobipyramid			nano-probes
urfaces.			
Ig ²⁺ -induced the	Aqueous	5 nM	Pb ²⁺ ions might Xing <i>et</i>
pecific dissolution of	solutions		interference the $al.$ ^{S4}
Ag			analysis results
The electron transfer	Aqueous	1.45	The background Chen et
rom mercury to the	solutions	nM	noise signal was al. ^{S5}
dsorbed 4-			high
	Recognition hechanism Aysine can strongly typine can strongly theract with Hg^{2+} ions Thymine- Hg^{2+} - hymine coordination hemistry The addition of Hg^{2+} nduces the formation f a partition layer on au nanobipyramid urfaces. Ig^{2+} -induced the pecific dissolution of Ag The electron transfer rom mercury to the dsorbed 4-	Recognition Sensing hechanism phase hysine can strongly Aqueous hteract with Hg ²⁺ ions solutions hymine-Hg ²⁺⁻ Aqueous hymine coordination solutions hemistry solutions the addition of Hg ²⁺ Aqueous number of a partition layer on solutions au nanobipyramid solutions urfaces. Ig ²⁺ -induced the Aqueous pecific dissolution of solutions solutions he electron transfer Aqueous or mercury to the solutions solutions	LecognitionSensing phaseLODnechanismphase2.9aysine can stronglyAqueous2.9nteract with Hg2+ ionssolutionsnM'hymine-Hg2+-Aqueous3.0aymine coordinationsolutionsµMhemistrySolutionsnM'he addition of Hg2+Aqueous200nduces the formationsolutionsnMf a partition layer onnMaunanobipyramidnMurfaces.1.45Ig2+-inducedthe Aqueous5 nMpecific dissolution ofsolutions1.45rom mercury to the dsorbed4-1.45

Table S2. The list indicating the comparison of colorimetric Hg^{2+} analysis routes developed by the plasmonic gold nano-probes.

LSPR of as-	Thymine-Hg ²⁺ -	Cellulose	50 nM	Weak, and	Chen et
prepared AuNP	thymine coordination	paper		influenced by the	al. ^{S6}
probes	chemistry	substrate		dispersion of	
				nano-probes	
Catalytic	Hg ²⁺ -triggered	Porous	32 pM	The background	Hai et
activity of gold	formation of gold	wood		noise signal was	al. ^{\$7}
to the reduction	amalgam			high	
of methylene					
blue					
LSPR of <i>in-situ</i>	High-affinity	Agarose	3.7	Medium stability	Du et al.
formed AuNPs	metallophilic	hydrogels	nM	which was	S8
	interaction between			influenced by the	
	Hg and Au ions			HAuCl ₄ diffusion	
LSPR of <i>in-situ</i>	High-affinity	Agarose	1.25	High stability	This
formed gold	metallophilic	hydrogels	nM	independent by	work
NPs	interaction between			reaction times	
	Hg and Au ions				

Supporting References.

- [S] G. Sener, L. Uzun and A. Denizli, Anal. Chem., 2014, 86, 514-520.
- [S2] X. Xue, F. Wang and X. Liu, J. Am. Chem. Soc., 2008, 130, 3244-3245.
- [S3] Y. Qi, J. Zhao, G. J. Weng, J. J. Li, X. Li, J. Zhu and J. W. Zhao, J. Mater. Chem. C, 2018, 6, 12283.
- [S4] T. Y. Xing, J. Zhao, G. J. Weng, J. J. Li, J. Zhu and J. W. Zhao, J. Mater. Chem. C, 2018, 6, 7557.
- [S5] Z. Chen, C. Zhang, Q. Gao, G. Wang, L. Tan and Q. Liao, Anal. Chem., 2015, 87, 10963-10968.
- [S6] G. H. Chen, W. Y. Chen, Y. C. Yen, C. W. Wang, H. T. Chang and C. F. Chen, Anal. Chem., 2014, 86, 6843-6849.
- [S7] J. Hai, F. Chen, J. Su, F. Xu and B. Wang, Anal. Chem., 2018, 90, 4909-4915.
- [S8] X. J. Du, Y. Chen, L. Y. Qin, H. Q. Luo, N. B. Li and B. L. Li, *Environ. Sci. Technol.*, 2022, 56, 1041-1052.