Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022







Fig. S2. Dielectric permittivity and loss tangent as a function of temperature and frequency for unpoled and poled (0.97-x)BNT-0.03BT-xNN ceramics: (a-l) x = 0-0.16.



**Fig. S3.** P-E, S-E and the corresponding J-E curves at 2 Hz during the first and second electric cycles for (0.97-x)BNT-0.03BT-xNN ceramics: (a-l) x = 0-0.16.

| Composition | Space | Lattice perometers | V (Å <sup>3</sup> ) | $R_{\rm wp}$ | R <sub>p</sub> | χ <sup>2</sup> |
|-------------|-------|--------------------|---------------------|--------------|----------------|----------------|
|             | group | Lattice parameters |                     | (%)          | (%)            |                |
| x=0 Virgin  | Cc    | a=9.6002(4) Å,     | 242.73              | 10.09        | 7.88           | 1.46           |
|             |       | b=5.5428(3) Å,     |                     |              |                |                |
|             |       | c=5.5750(1) Å,     |                     |              |                |                |
|             |       | α=γ=90° β=125.094° |                     |              |                |                |
| x=0 Poled   | R3c   | a=b=5.5399(4) Å,   | 363.946             | 9.92         | 7.77           | 1.39           |
|             |       | c=13.6931(11) Å,   |                     |              |                |                |
|             |       | α=β=90° γ=120°     |                     |              |                |                |

 Table S1. Refined structural parameters by using Rietiveld method for the x=0 ceramic

 before and after poling.