Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Arrays of Spherical Nanostructured Oxide Particles for Photon Management Enhancement in Photovoltaic Devices

Lin Zheng¹, Zhizai Li¹, Xufeng Zhou², Hong Zhang³, Qian Wang¹, Hao Jia^{1,*}, and Zhiwen Jin^{1,*}

Dr. L. Zheng, Dr. Z. Li, Prof. Q. Wang, Prof. H. Jia, Prof. Z. Jin

¹School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China

Dr. X. Zhou

²School of Material Science and Engineering, Liaocheng University, Liaocheng 252000, China

Dr. H. Zhang ³Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Lanzhou University, Lanzhou, China

E-mail: jinzw@lzu.edu.cn, jiahao@lzu.edu.cn

Keywords: Spherical nanostructured oxide particles (SNOPs); Photon management; Light field interference; Photovoltaic devices

Experimental Section

Materials preparation

Materials: N, N-Dimethylformamide (DMF, 99%), HI (57% wt%), and TiCl₄ were gained from Alfa Aesar. Cesium iodide (CsI, \geq 99.99%), 2,2',7,7'-tetrakis (N,N-di-pmethoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), lead (II) iodide (PbI₂, >99.99%), lithium bis(tri-fluoromethanesulfonyl)imide (Li-TFSI), tert-butylpyridine (TBP) and tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) tri[bis(trifluoromethane)sulfonimide] (FK209) were acquired from Xi'an Polymer Light Company. Aluminum oxide (Al₂O₃, α -phase, 200 nm, 99.99%), Zirconium dioxide (ZrO₂, 200 nm, 99.99%), and Silicon dioxide (SiO₂, 200 nm, 99.99%) were purchased from Alfa Aesar. We did not further purification of the materials before we used them.

DMAI intermediate Synthesis: Under the condition of an ice bath (0°C), DMF (25 mL) was gradually added dropwise to the HI (100 mL) solution, and stirred at 400 rpm for 6 hours (h). After the stirring is completed, use the rotary steaming apparatus to collect the precipitate at a temperature of about 90°C. Following that, it was dissolved in ethanol repeatedly and precipitated with anhydrous ether to obtain a white sample. Then heated in a vacuum oven at 60°C overnight to form DMAI powder.

 $CsPbI_3$ film preparation: The precursor solution was formed by dissolving DMAI (0.1661 g), PbI₂ (0.2766 g) and CsI (0.156 g) in 1 mL DMF solution under continuous stirring for 2 h.

HTL Solution Preparation: A solution was prepared by dissolving Spiro-OMeTAD (145 mg), 22 μ L Li-TFSI solution (520 mg Li-TFSI in 1 mL acetonitrile), 36 μ L TBP, and 36 μ L FK209 solution (300 mg FK209 in 1 mL acetonitrile) in 1 mL of CB solution.

Device fabrication preparation

*Preparation of TiO*₂*-blocking layer*: The purchased FTO glass was ultrasonically cleaned with ethanol and isopropanol for 30 minutes (min), then dried with dry air, and treated with O_2 plasma for 10 min. Afterward, the FTO glasses were immersed in 4.5 mL TiCl₄ aqueous solution at 70°C for 60 min and washed with distilled water and ethanol. The compact TiO₂ film was formed after annealing at 200°C for 30 min. To prepare SNOPs (Al₂O₃, ZrO₂, SiO₂) doped TiO₂ layer, first, dissolve the SNOPs in cyclohexane, followed spin-coat on clean FTO glass, and then continue the above steps.

Growth of the CsPbI₃ film: The perovskite precursor solution was coated on TiO_2 substrate by one-step spin-coating method at 1000 rpm for 10 s and 3000 rpm for 35 s, respectively. The final films were formed after annealing at 210°C for ~10 minutes. To prepare SNOPs (Al₂O₃, ZrO₂, SiO₂) doped PVK layer, we dissolve 0.1mg/mL of SNOPs in the prepared precursor solution and then continue the above steps.

Assembly of the solar cells: The hole transport layer (Spiro-OMeTAD) was coated on perovskite film by spin coating at 5000 rpm for 35 s. To prepare Spiro mixed with SNOPs (Al₂O₃, ZrO₂, SiO₂), we dissolve 0.1 mg of SNOPs directly into Spiro. Finally, thermally evaporated thick gold (~ 80 nm) was used as top electrodes (devices area: 0.09 cm²).

Characterization Section:

Absorbance and PL spectra: Absorbance results were collected by FLS920T using the slowest scanning rate with one-second integration and a 2 nm slit width. The PL spectra were measured using a PicoQuant FluoTime 300.

XRD: The X-ray diffraction (XRD) patterns were characterized by the Shimadzu XRD-6000 X-ray diffractometer with a Cu K α ($\lambda = 0.1541$ nm).

SEM: The surface morphology of No addition and add SNOPs (Al₂O₃, ZrO₂, SiO₂) was measured by SEM using the Hitachi S-4800 scanning electron microscope.

J-V, *EQE*, and *Steady measurement*: The *J-V* and Steady measurements were performed via the solar simulator (SS-F5-3A, Enlitech) along with AM 1.5G spectra whose intensity was calibrated by the certified standard silicon solar cell (SRC-2020, Enlitech) at 100 mW/cm². This used reverse scan mode (from V_{OC} to J_{SC}) and forward scan mode (from V_{OC} to J_{SC}) with a scan rate of 30 mV/s. The external quantum efficiency (EQE) data were obtained by using the solar-cell spectral-response measurement system (QE-R3011, Enlitech).

Simulation Section:

The simulation mainly targets the light field. All the simulations are calculated with the finite-difference time-domain (FDTD) method. Periodic boundary conditions are used to simulate the infinite structural distributions. For each simulation, planar waves with different polarizations are incident to the device.

Figure S1. SEM images of the cross-sectional and top views of the SNOPs added into the PVK layer of PSCs: (a-b) The cross-sectional view of PVK-SiO₂ and PVK-ZrO₂; (c-d) The top view of PVK-SiO₂ and PVK-ZrO₂.

Figure S2. XRD patterns of reference and three SNOPs added into PVK layer: (a) For different SNOPs (SiO₂, ZrO_2 , Al_2O_3) and (b) For different concentrations of Al_2O_3 .

Figure S3. Photovoltaic characterization: Statistical distribution of four key parameters for PSCs (20 devices) in four cases (reference, TiO_2 -Al₂O₃, Spiro-Al₂O₃, PVK-Al₂O₃): (a) V_{OC} and (b) FF.

Figure S4. Spectral characterization: (a) Absorption spectra of reference and three SNOPs added into PVK layer of PSCs; (b) PL spectra of reference and three SNOPs added into PVK layer of PSCs.

Figure S5. Schematic diagram of simulation of the light intensity distribution of SNOPs added into different layers of PSCs: (a) Reference; (b) Spiro layer; (c) TiO₂ layer; and (d) PVK layer.

Figure S6. Simulation of the light intensity distribution at six different incident wavelengths in three cases: (a) PVK-SiO₂; (b) PVK-ZrO₂; and (c) PVK-Al₂O₃+PVK-ZrO₂.

Figure S7. The integrated absorption coefficient of reference and three SNOPs added into different layers of PSCs under absorption benchmark over AM 1.5G (reference, SiO₂, ZrO₂, and Al₂O₃): (a) AM 1.5G spectrum; (b) Spiro layer; (c) TiO₂ layer; and (d) PVK layer.

Figure S8. Photovoltaic characterization: (a) *J-V* characteristics of reference and optimized (PVK-Al₂O₃+Spiro-ZrO₂) devices; (b) Based on different concentrations (PVK-Al₂O₃+Spiro-ZrO₂).

Device	$J_{ m SC}$ (mA/cm ²)	$V_{\rm OC}({ m V})$	FF (%)	PCE (%)
Reference	20.34	1.091	79.71	17.70
Spiro-Al ₂ O ₃	20.57	1.103	79.56	18.05
TiO ₂ -Al ₂ O ₃	20.66	1.101	79.85	18.16
PVK-Al ₂ O ₃	20.85	1.106	79.29	18.30

Table S1. The photovoltaic parameters of PSCs are extracted from Figure 2a.

Table S2. The photovoltaic parameters of PSCs are extracted from Figure 2d.

Device	Scan mode	$J_{\rm SC}$ (mA/cm ²)	$V_{\rm OC}({ m V})$	FF (%)	PCE (%)
Reference	reverse	20.34	1.091	79.71	17.70
	forward	20.25	1.017	76.75	15.81
PVK-Al ₂ O ₃	reverse	20.85	1.106	79.29	18.30
	forward	20.83	1.100	71.52	16.40

 Table S3. The photovoltaic parameters of PSCs are extracted from Figure 2f.

Device	$J_{\rm SC}$ (mA/cm ²)	$V_{\rm OC}({ m V})$	FF (%)	PCE (%)
Reference	20.34	1.091	79.71	17.70
PVK-SiO ₂	20.54	1.105	79.71	18.10
PVK-ZrO ₂	20.65	1.103	79.57	18.14
PVK-Al ₂ O ₃	20.85	1.106	79.29	18.30

Table S4. The photovoltaic parameters of PSCs are extracted from Figure S8a.

Device	Scan mode	J_{SC} (mA/cm ²)	$V_{oc}(\mathbf{V})$	FF (%)	PCE (%)
Defenence	reverse	20.85	1.106	79.29	18.30
Reference	forward	20.83	1.100	71.52	16.40
PVK-Al ₂ O ₃ +	reverse	20.96	1.103	80.12	18.55
Spiro-ZrO ₂	forward	21.05	1.039	76.52	16.74

Device	J _{SC} (mA/cm ²)	$V_{\rm OC}({ m V})$	FF (%)	PCE (%)
Reference	20.85	1.106	79.29	18.30
0.05 mg/mL ZrO ₂	20.82	1.113	79.58	18.45
0.10 mg/mL ZrO ₂	20.96	1.103	80.12	18.55
0.30 mg/mL ZrO ₂	20.74	1.072	80.47	17.90

 Table S5. The photovoltaic parameters of PSCs extracted from Figure S8b.