Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Ultralight and Thermally Conductive Ti₃C₂T_x MXene-Silver Nanowires Cellular Composite

Film for High-Performance Electromagnetic Interference Shielding

Zhenping Ma^a, Hui Feng^a, Yongbao Feng^{a*}, Xin Ding^b, Xianzhen Wang^a, Wei Wang^a, Xiaojie

Zhang^a, Shuo Kong^a, Xiong Lan^a, Qiulong Li^{a*}

a. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China

b. Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State

Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

[*] Email: fengyongbao@163.com (Y. B. Feng)

Email: qlli@njtech.edu.cn (Q. L. Li)

Figure S1. SEM image of Ti₃AlC₂ MAX.

Figure S2. Cross-sectional SEM images of (a) PM, (b) MA_{0.2}, (c) MA_{0.25}, (d) MA_{0.5}, (e) MA_{0.75} and

(f) MA_{0.8}.

Figure S3. High-resolution Ti 2p, C 1s and O 1s spectrum of $Ti_3C_2T_x$ MXene.

Figure S4. High-resolution C 1s and O 1s spectrum of Ag NWs.

Figure S5. The mechanical properties of the composite films.

Figure S6. N_2 absorption and desorption isotherms and pore size distribution of (a) $MA_{0.5}$ and (b)

MA_{0.8}.

Materials	Thickness (mm)	EMI SE (dB)	SSE/t (dB cm ² g ⁻¹)	Refs.
CMF/rGO/Ag	5	63.6	7617	1
PVDF/Ni	2	26.8	128	2
POM/PLLA/MWCNT	2	48.1	177.8	3
Ti ₃ C ₂ T _x /PEDOT : PSS	0.013	21.6	9170	4
d-Ti ₃ C ₂ T _x /CNF	0.074	26	2154	5
Ti ₃ C ₂ T _x /ANF	0.017	20	11554	6
Ti ₃ C ₂ T _x /CNTs/CNF	0.038	38.4	7874	7
Ti ₃ C ₂ T _x /SA	0.026	54.3	17586	8
Ti ₃ C ₂ T _x /PVA	0.1	26	4770	9
Ag/CNTs/PDMS	1.5	56	373	10
AgNW	5	35	2416	11
AgNW/PVDF	0.3	23.25	989	12
CNT/Chitosan aerogel	2.5	37.6	8556	13
CNT/PS	0.12	18.5	275	14
rGO	2.5	45.1	692	15
rGO/Fe ₃ O ₄	0.3	24	1033	16
rGO-PEDOT	0.8	70	841	17
MA _{0.5}	0.101	69.36	13861	This work
$MA_{0.8}$	0.104	81.11	16250	This work

Table S1. Comparison of electromagnetic interference shielding performance for typical materials.

References

- Y. Shen, Z. Lin, J. Wei, Y. Xu, Y. Wan, T. Zhao, X. Zeng, Y. Hu and R. Sun, *Carbon*, 2022, 186, 9-18.
- 2 H. M. Zhang, G. C. Zhang, Q. Gao, M. Tang, Z. L. Ma, J. B. Qin, M. Y. Wang and J.-K. Kim, *Chem. Eng. J.*, 2020, **379**, 122304.
- 3 J. Li, J. L. Chen, X. H. Tang, J. H. Cai, J. H. Liu and M. Wang, *J. Colloid Interface Sci.*, 2020, 565, 536-545.
- 4 R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao and X. Feng, ACS Appl. Mater. Interfaces, 2018, 10, 44787-44795.

- 5 W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and F. Chen, *ACS Nano*, 2018, **12**, 4583-4593.
- 6 F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si, J. Huang, M. Zhang and Q. Ma, *Nanoscale*, 2019, **11**, 23382-23391.
- 7 W. Cao, C. Ma, S. Tan, M. Ma, P. Wan and F. Chen, Nano-Micro Lett., 2019, 11, 72.
- 8 Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan and C. Lu, Adv. Mater. Interfaces, 2019, 6, 1802040.
- 9 H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang and L. Cheng, ACS Appl. Mater. Interfaces, 2019, 11, 10198-10207.
- 10 J. Zhang, H. Li, T. Xu, J. Wu, S. Zhou, Z. H. Hang, X. Zhang and Z. Yang, *Carbon*, 2020, 165, 404-411.
- 11 J. Ma, K. Wang and M. Zhan, RSC Adv., 2015, 5, 65283-65296.
- 12 H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng, C. Liu, C. Shen and X. Liu, *Adv. Compos. Hybrid Mater.*, 2021, **4**, 505-513.
- 13 M. Z. Li, L. C. Jia, X. P. Zhang, D. X. Yan, Q. C. Zhang and Z. M. Li, J. Colloid Interface Sci., 2018, 530, 113-119.
- 14 Y. Chen, H. B. Zhang, Y. Yang, M. Wang, A. Cao and Z. Z. Yu, *Adv. Funct. Mater.*, 2016, **26**, 447-455.
- 15 D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang and Z. M. Li, Adv. Funct. Mater., 2015, 25, 559-566.
- 16 W. L. Song, X. T. Guan, L. Z. Fan, W. Q. Cao, C. Y. Wang, Q. L. Zhao and M. S. Cao, J. Mater. Chem. A, 2015, 3, 2097-2107.
- 17 N. Agnihotri, K. Chakrabarti and A. De, RSC Adv., 2015, 5, 43765-43771.