Supporting Information

Realization of switching between TADF and HLCT emissions through

modulation of the intramolecular charge transfer character

Jiaqi Li, Mingfan Zhang, Tingyu Li, Dongxue Guo, Tian Tian, and Houyu Zhang*

State key laboratory of supramolecular structure and materials,

Institute of theoretical chemistry, College of Chemistry, Jilin university,

Changchun 130012, P.R. China

*Email: <u>houyuzhang@jlu.edu.cn</u>

Contents

Table S1. Calculated HOMO energies of molecule TPA-BZP with different DFT functionals.

Table S2. Calculated absorption and emission wavelengths of TPA-BZP with different functionals.

Table S3. Calculated $\Delta E_{T_2-T_1}$ of the TPA-based D-A type molecules and different acceptor units.

Table S4. NTO distributions and main transition excitations of acceptor fragments.

Table S5. Calculated HOMO-LUMO overlap integral and charge transfer amount in S₀ state.

Table S6. Calculated HOMO and LUMO levels of the donor and acceptor segments.

 Table S7. Calculated absorption wavelengths and energies, oscillator strengths, and dominant orbital excitations from TD-DFT calculation.

Table S8. Calculated the related orbital distributions and vertical excitation energies of LE states.

Table S9. Calculated vertical excitation energies and gaps of the investigated molecules.

Table S10. Calculated adiabatic excitation energies and gaps of the investigated molecules.

Table S11. Calculated $\Delta E_{T_2-T_1}$ and NAC constants between T_1 and T_2 states by ORCA package.

Table S12. Calculated parameters for the state hybridization of LE and CT states.

Table S13. Calculated dihedral angles for the investigated molecules in ground and excited states.

- **Table S14.** Calculated parameters for the state hybridization of LE and CT states for the investigated

 D-A-D type molecules.
- **Table S15.** Calculated vertical excitation energies of singlet and triplet states, energy gaps, SOC and NAC constants, k_{RISC} , k_{p} and k_{f} of the investigated molecules.

- Figure S1. The TDM maps, the overlaps and distributions of electron-hole wavefunctions of the BFbased molecules.
- Figure S2. NTO analysis for excited states and related energy diagrams of the state hybridization between LE and CT states for both singlet and triplet subspaces.
- Figure S3. Calculated emission energies and oscillator strengths in S_1 states of the POZ-based molecules as function of the twisted angles.
- Figure S4. Chemical structures of the investigated D-A-D type molecules.
- Figure S5. NTO analysis for the related excited states and energy diagrams of the state hybridization between LE and CT states for D-A-D type HLCT molecules.
- Figure S6. NTO analysis for the related excited states and energy diagrams of the state hybridization between LE and CT states for D-A-D type TADF molecules.

Table S1. Calculated HOMO energies of molecule **TPA-BZP** with different DFT functionals with a fixed percentage of nonlocal Hartree-Fock exchange (HF_{exc}).

	B3LYP	PBE0	BMK	CAM-B3LYP	Exptl. ^a
HFexc	20%	25%	42%	19% at SR and 65% at LR	
HOMO (eV)	-4.95	-5.18	-5.61	-6.19	-5.22

^aExptl: from ref. 35.

Table S2. Calculated absorption wavelength (λ_{abs}) and emission wavelength (λ_{em}) of molecule **TPA-BZP** with different DFT functionals with a fixed percentage of nonlocal Hartree-Fock exchange (HF_{exc}).

	B3LYP	PBE0	BMK	CAM-B3LYP	Exptl. ^a
HFexc	20%	25%	42%	19% at SR and 65% at LR	
λ _{abs} (nm)	544	508	433	398	436
λ _{em} (nm)	687	611	527	509	523

^aExptl: from ref. 35.

Table S3. Calculated $\Delta E_{T_2-T_1}$ of the TPA-based D-A type molecules and different acceptor units.

Mol.	$\Delta E_{T_2-T_1}$ (D-A)	$\Delta \boldsymbol{E}_{\mathbf{T_2}-\mathbf{T_1}} (\mathbf{A})$	
TPA-AN	1.38 (1.31) ^a	1.58 (1.62) ^a	
TPA-AC	1.15 (1.12) ^b	1.44	
TPA-NZP	1.50 (1.60) ^c	1.79 (1.51)°	
TPA-DPPZ	$0.47 (0.90)^{d}$	0.40	
TPA-BZP	1.00 (0.97) ^e	1.00	

^{a, b, c, d, e}: Data in parentheses are respectively from ref. 46, 48, 50, 37, 35.

	State	Excitation	N	TOs
			Hole	Electron
	T_1	$H \to L (95.8\%)$		•>•
AN	T_2	$H-2 \rightarrow L (51.8\%)$	A · A	
		$\mathrm{H} \rightarrow \mathrm{L+2}\;(40.8\%)$,	
	T_1	$H \rightarrow L (94.7\%)$		
AC	T_2	$H^{-3} \rightarrow L(61.9\%)$		
	• 2	$H \rightarrow L+2 (31.8\%)$		07220
	T_1	$\mathrm{H} \rightarrow \mathrm{L} \ (99.7\%)$.	
NZ	T_2	H-1 \rightarrow L (96.5%)		•>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	T ₁	$H \to L (56.1\%)$		
		$\text{H-2} \rightarrow \text{L} \ (25.2\%)$		
			v	
	_			
007	T_2	$H-3 \to L (89.8\%)$		
rrL	т	$\mathbf{H} = 1 + $	- •¥.	
	13	$\Pi - 1 \rightarrow L (90.4\%)$		
	T_4	$H-2 \rightarrow L (31.5\%)$		
		$H \rightarrow L+2 (25.3\%)$	C	
		H-4 \rightarrow L (11.9%)		
	T_1	$H \rightarrow L (94.9\%)$		
BZ	T_2	$H-1 \to L (98.5\%)$		•
	T_1	$H \to L (81.9\%)$		
BZP		•		*
	T_2	H-2 \rightarrow L (92.5%)		
			2 -0	.
	T_1	$H \rightarrow I_{*}(83.0\%)$		
	ΙI	$H \rightarrow L+1 (5.0\%)$		<u>_</u>
		······································		مرچه مرچه
BF	T_2	H-1 → L (77.9%)		·
	-	$H-1 \rightarrow L+2 (7.2\%)$	S	222

Table S4. NTO distributions and main transition excitations of T_1 and T_2 states for various acceptor fragments, estimated by TD-DFT at the BMK/6-31G (d, p) level.

Mol.	TPA-BZP	TPA-BF	POZ-BZP	POZ-BF
β (S ₀)	0.4167	0.3299	0.1234	0.1345
q	0.8125	0.8293	0.9162	0.9306

Table S5. Calculated HOMO-LUMO overlap integral (β) and charge transfer amount (q) of the investigated molecules in S₀ state.

Table S6. Calculated HOMO and LUMO levels of the donor fragments **TPA** and **POZ**, and acceptor units **BZ** and **BF** at the PBE0/6-31G (d, p) level.

	Structure	Н	ОМО	LUM	LUMO	
TPA			-5.18 eV		-0.21 eV	
POZ			-4.92 eV		-0.12 eV	
BZ	\Diamond		-6.91 eV		-2.21 eV	
BF			-6.09 eV		-1.80 eV	

Mol.	State	λ (nm)	ΔE (eV)	f	Excitation
	\mathbf{S}_1	433	2.87	0.4849	$H \rightarrow L (93\%)$
TPA-BZP	S_2	332	3.73	0.0440	$\text{H-1} \rightarrow \text{L} (91\%)$
	T_1	624	1.99	0	$\mathrm{H} \rightarrow \mathrm{L} \ (46\%); \ \mathrm{H}\text{-}1 \rightarrow \mathrm{L} \ (43\%)$
_	T_2	414	2.99	0	$\mathrm{H} \rightarrow \mathrm{L} \ (30\%); \mathrm{H} \rightarrow \mathrm{L} + 1 \ (15\%)$
	\mathbf{S}_1	398	3.12	0.1265	$H \rightarrow L (62\%); H-1 \rightarrow L (35\%)$
TPA-BF	S_2	329	3.77	0.2157	$\mathrm{H} \rightarrow \mathrm{L} \ (26\%); \ \mathrm{H}\text{-}1 \rightarrow \mathrm{L} \ (44\%)$
	T_1	502	2.47	0	$\mathrm{H} \rightarrow \mathrm{L} \ (33\%); \mathrm{H}\text{-}1 \rightarrow \mathrm{L} \ (49\%)$
	T_2	391	3.17	0	$\mathrm{H} \rightarrow \mathrm{L}{+1} \ (40\%); \ \mathrm{H} \rightarrow \mathrm{L}{+4} \ (21\%)$
	\mathbf{S}_1	587	2.11	0	$H \rightarrow L (98\%)$
POZ-BZP	S_2	338	3.67	0.2865	$\text{H-2} \rightarrow \text{L} (98\%)$
	T_1	591	2.10	0	$H \rightarrow L (97\%)$
	T_2	542	2.29	0	$\text{H-2} \rightarrow \text{L} (81\%)$
	\mathbf{S}_1	456	2.72	0.0015	$H \rightarrow L (97\%)$
POZ-BF	S_2	359	3.46	0.0112	$\text{H-1} \rightarrow \text{L} (91\%)$
	T_1	471	2.63	0	$\mathrm{H} \rightarrow \mathrm{L} \ (44\%); \ \mathrm{H}\text{-}1 \rightarrow \mathrm{L} \ (43\%)$
	T_2	451	2.75	0	$\mathrm{H} \rightarrow \mathrm{L} \ (50\%); \ \mathrm{H}\text{-}1 \rightarrow \mathrm{L} \ (33\%)$

Table S7. Calculated absorption wavelengths (λ) and energies (ΔE), oscillator strengths (*f*), and dominant orbital excitations from TD-DFT calculation for the molecules.

Table S8. Calculated the related orbital distributions and vertical excitation energies of LE states.

	Hole	Particle	E _{1_{LE}}	$E_{3_{LE}}$
BF			3.41 eV	2.65 eV
BZP			3.43 eV	2.28 eV

Mol.	TPA-BZP (BZP)	TPA-BF (BF)	POZ-BZP	POZ-BF
E_{T_1}	1.99 (2.28) ^a	2.47 (2.66) ^a	2.10	2.63
E_{T_2}	2.99 (3.46) ^a	3.17 (3.64) ^a	2.29	2.75
E_{T_3}	3.47	3.46	3.17	3.10
E_{T_4}	3.48	3.51	3.47	3.57
E_{T_5}	3.54	3.65	3.71	3.59
E_{S_1}	2.87	3.12	2.11	2.72
E_{S_2}	3.73	3.77	3.67	3.47
$\Delta \boldsymbol{E}_{T_2-T_1}$	1.00 (1.18) ^a	0.70 (0.98) ^a	0.19	0.12
$\Delta \boldsymbol{E}_{S_1-T_1}$	0.88	0.65	0.01	0.09
$\Delta \boldsymbol{E}_{S_1-T_2}$	-0.12	-0.05	-0.18	-0.03
Mol.	CZP-BZP	CZP-BF	DMAC-BZP	DMAC-BF
E_{T_1}	2.08	2.54	2.26	2.65
E_{T_2}	3.26	3.45	2.34	2.95
E_{T_3}	3.46	3.47	3.47	3.49
E_{T_4}	3.47	3.62		
E_{T_5}	3.64	3.65		
E_{S_1}	3.15	3.26	2.36	2.97
E_{S_2}	3.67	3.75	3.66	3.43
$\Delta \boldsymbol{E}_{T_2-T_1}$	1.18	0.91	0.08	0.30
$\Delta \boldsymbol{E}_{S_1-T_1}$	1.07	0.72	0.10	0.32
$\Delta E_{S_1-T_2}$	-0.11	-0.19	0.02	0.02

Table S9. Calculated vertical excitation energies of singlet and triplet states, energy gaps between S_1 and related T_n states of the investigated molecules by BMK/6-31G (d, p) level (energy unit in eV).

^a: Data in parentheses are parameters from acceptor units.

Table S10. Calculated adiabatic excitation energies of S_1 and T_1 states and their energy gaps at BMK/6-31G (d, p) level (energy unit in eV).

Mol.	TPA-BZP	TPA-BF	POZ-BZP	POZ-BF
$E_{T_1-S_0}$	1.80	1.93	1.77	1.92
$E_{S_1-S_0}$	2.62	2.62	1.77	2.28
$\Delta E_{\rm ST}$	0.82	0.69	0	0.36
Mol.	CZP-BZP	CZP-BF	DMAC-BZP	DMAC-BF
$E_{T_1-S_0}$	2.82	2.74	2.12	2.21
$E_{S_1-S_0}$	1.90	2.21	1.93	2.57
$\Delta E_{\rm ST}$	0.92	0.53	0.19	0.36

Mol.	POZ-BZP	POZ-BF	DMAC-BZP	DMAC-BF
$\Delta \boldsymbol{E}_{T_2-T_1}$	0.19	0.12	0.08	0.30
NAC (bohr ⁻¹)	3.43	2.11	3.30	2.68

TPA-BF

0.70

2.27

CZP-BZP

1.18

1.85

CZP-BF

0.91

1.06

TPA-BZP

1.00

0.98

Mol.

 $\Delta \boldsymbol{E}_{T_2-T_1}$

NAC (bohr⁻¹)

Table S11. Calculated $\Delta E_{T_2-T_1}$ and NAC constants between T_1 and T_2 states for the investigated molecules by ORCA package.

Table S12. Calculated parameters for the state hybridization of LE and CT states for the investigated molecules (energy unit in eV).

Mol.	$E_{1_{\rm LE}}$	E _{1ct}	ΔE	E_{S_1}	E_{S_2}	δΕ	$J_{\rm S}$	ηs
CZP-BZP	3.43	3.39	0.02	3.15	3.67	0.52	0.26	6.50
CZP-BF	3.41	3.60	0.10	3.26	3.75	0.49	0.22	1.10
DMAC-BZP	3.43	2.59	0.42	2.36	3.66	1.30	0.50	0.60
DMAC-BF	3.41	2.99	0.21	2.97	3.43	0.46	0.10	0.24
Mol.	$E_{3_{LE}}$	E _{3ct}	ΔE	E_{T_1}	E_{T_2}	δΕ	J_{T}	η
CZP-BZP	2.28	3.06	0.39	2.08	3.26	1.18	0.44	0.57
CZP-BF	2.65	3.34	0.34	2.54	3.45	0.91	0.30	0.44
DMAC-BZP	2.28	2.32	0.02	2.26	2.34	0.08	0.04	1.00
DMAC-BF	2.65(5)	2.94(3)	0.14(4)	2.65(3)	2.94(4)	0.29(1)	0.02(0)	0.06(9)

Table S13. Calculated dihedral angles (in degree) for the investigated molecules in the ground and excited states.

Mol.	S ₀	S_1	T ₁	$ S_0-S_1 $	S ₀ -T ₁
CZP-BZP	36.4	14.1	14.6	22.3	21.8
CZP-BF	37.5	29.2	27.7	8.3	9.8
DMAC-BZP	86.0	89.9	61.0	3.9	25.0
DMAC-BF	89.5	85.5	59.8	4.0	29.2

Mol.	E _{1_{LE}}	E _{1_{CT}}	ΔE	E_{S_1}	E_{S_3}	δΕ	$J_{\rm S}$	ηs
o-2CZP-BZ	3.43	3.71	0.14	3.20	3.94	0.74	0.34	1.22
m-2CZP-BZ	3.43	3.60	0.08	3.23	3.80	0.57	0.27	1.69
p-2CZP-BZ	3.43	3.36	0.04	3.00	3.79	0.79	0.39	4.87
o-2POZ-BZ	3.43	2.40	0.52	2.07	3.76	1.69	0.67	0.64
m-2POZ-BZ	3.43	2.40	0.52	2.07	3.82	1.75	0.71	0.68
p-2POZ-BZ	3.43	2.36	0.54	2.01	3.78	1.77	0.70	0.65
Mol.	$E_{3_{\rm LE}}$	E _{3ct}	ΔE	E _{T1}	E _{T_n}	δΕ	J_{T}	$\mathbf{\eta}_{\mathrm{T}}$
o-2CZP-BZ	2.28	3.15	0.43	2.26	3.17(T ₂)	0.91	0.13	0.15
m-2CZP-BZ	2.28	2.96	0.34	2.18	3.06(T ₂)	0.88	0.28	0.41
p-2CZP-BZ	2.28	2.93	0.32	2.05	3.16(T ₂)	1.11	0.45	0.69
o-2POZ-BZ	2.28	2.27	0.01	1.86	2.69(T ₃)	0.83	0.41	20.5
m-2POZ-BZ	2.28	2.42	0.07	2.05	2.65(T ₃)	0.60	0.29	2.08
p-2POZ-BZ	2.28	2.21	0.03	2.00	2.49(T ₃)	0.49	0.24	3.46

Table S14. Calculated parameters for the state hybridization of LE and CT states for the investigated D-A-D type molecules (energy unit in eV).

Mol.	o-2CZP-BZ	m-2CZP-BZ	<i>p</i> -2CZP-BZ
<i>E</i> _{T1}	2.26	2.18	2.05
E_{T_2}	3.17	3.06	3.16
E_{T_3}	3.27	3.30	3.26
E_{S_1}	3.20	3.23	3.00
E_{S_2}	3.38	3.42	3.34
$\Delta E_{T_2-T_1}$	0.91	0.88	1.11
NAC (T_2-T_1)	1.68	2.12	1.78
$\Delta E_{S_1-T_1}$	0.94	1.05	0.95
$\Delta E_{S_1-T_2}$	0.03	0.17	-0.16
SOC (T ₁ -S ₁)	0.27	0.46	0.18
SOC (T ₂ -S ₁)	0.43	0.56	0.34
$k_{\text{RISC}}(\mathbf{T}_1 - \mathbf{S}_1)$	1.11×10 ⁻³⁸	2.10×10 ⁻⁴⁸	6.44×10 ⁻⁴⁰
$k_{\mathrm{RISC}}(\mathrm{T}_2\text{-}\mathrm{S}_1)$	2.91×10 ⁷	2.12×10^{5}	6.65×10^{7}
$f_{ m em}$	0.2438	0.3287	0.8057
$\Delta E_{\rm em}$	2.51	2.71	2.36
β (S ₁)	0.5022	0.4472	0.5830
$k_{ m f}$	0.67×10^{8}	1.05×10^{8}	1.95×10 ⁸
$k_{ m p}$	2.06×10 ⁻²	3.11×10 ⁻²	6.43×10 ⁻³
Mol.	o-2POZ-BZ	m-2POZ-BZ	p-2POZ-BZ
E_{T_1}	1.86	2.05	2.00
$\boldsymbol{E}_{\mathrm{T}_2}$	2.13	2.14	2.05
<i>E</i> _{T3}	2.69	2.65	2.49
E_{S_1}	2.07	2.07	2.01
E_{S_2}	2.32	2.40	2.06
$\Delta E_{\mathrm{T}_2-\mathrm{T}_1}$	0.27	0.09	0.05
NAC (T_2-T_1)	5.03	6.32	3.74
$\Delta E_{S_1-T_1}$	0.21	0.02	0.01
$\Delta E_{S_1-T_2}$	-0.06	-0.07	-0.04
SOC (T ₁ -S ₁)	0.53	0.67	0.09
SOC (T_2-S_1)	0.47	1.14	0.21
$k_{\mathrm{RISC}}(\mathrm{T_{1}-S_{1}})$	1.98×10^{4}	9.03×10 ⁷	2.04×10^{6}
$k_{\mathrm{RISC}}(\mathrm{T}_2\text{-}\mathrm{S}_1)$	1.54×10^{8}	9.72×10^{8}	2.54×10^{7}
$f_{ m em}$	0(0.0029) ^a	0(0.0031) ^a	0(0.0037) ^a
$\Delta E_{\rm em}$	1.22(1.24) ^a	1.33(1.34) ^a	1.35(1.36) ^a
β (S ₁)	0.1191(0.1584) ^a	0.1199(0.1504) ^a	0.1145(0.1468) *
$k_{ m f}$	0(1.94×10 ⁵) ^a	0(2.41×10 ⁵) ^a	$0(2.97 \times 10^5)$ ^a
k_{p}	2.99×10 ⁻²	7.05×10 ⁻²	2.08×10 ⁻³

Table S15. Calculated vertical excitation energies of singlet and triplet states, energy gaps, SOC constants (cm⁻¹), NAC constants (bohr⁻¹), k_{RISC} (s⁻¹) between S₁ and related T_n states, overlap integral β , k_p (s⁻¹) and k_f (s⁻¹) of the investigated molecules by BMK/6-31G (d, p) level (energy unit in eV).

^a: Data in parentheses are parameters from the molecular geometries with the specific dihedral angle $\alpha = 80^{\circ}$.

Figure S1. The TDM maps, the overlaps and distributions of electron-hole wavefunctions for the **BF**-based molecules.

Figure S2. NTO analysis for the S_1 , S_2 , T_1 , and T_2 states and related energy diagrams of the state hybridization between LE and CT states for both singlet and triplet subspaces.

Figure S3. Calculated emission energies and oscillator strengths in S_1 states of the **POZ**-based molecules as function of the twisted angles. The blue dashed lines label the thermally activated energy at room temperature. The inserted structures are the optimized compounds with the lowest energies.

Figure S4. Chemical structures of the investigated D-A-D type molecules.

Figure S5. NTO analysis for the related excited states and energy diagrams of the state hybridization between LE and CT states of both singlet and triplet subspaces for D-A-D type HLCT molecules.

Figure S6. NTO analysis for the related excited states and energy diagrams of the state hybridization between LE and CT states of both singlet and triplet subspaces for D-A-D type TADF molecules.

