Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Portable Surface-Enhanced Raman Scattering Sensor for Multiplex

Identification and Quantification of Pesticide Residues in Plant Leaves

Cheng Ye, ^a Meng He, ^a Zhengdong Zhu, ^a Xiaoyi Shi, ^a Maofeng Zhang, ^{*a} Zhiyong Bao, ^b Youju Huang, ^{*c} Changlong Jiang, ^{*d} Jianhua Li, ^e Yucheng Wu ^b

^a School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road,

Hefei, 230009, China

^b School of Materials Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China

^c College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China

^d Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China

^e Anhui Topway Testing Services Co. Ltd., 18 Rixin Road, Xuancheng Economic and Technological Development Zone, 242000, China

*Corresponding Authors E-mail: mfzhang@hfut.edu.cn , yjhuang@hznu.edu.cn, cljiang@iim.ac.cn

Fig. S1 XRD patterns of different samples: (a) ZIF-8, ZIF-67 and ZIF-8@ZIF-67. (b) $ZnO@Co_3O_4$ and $ZnO@Co_3O_4@Ag$.

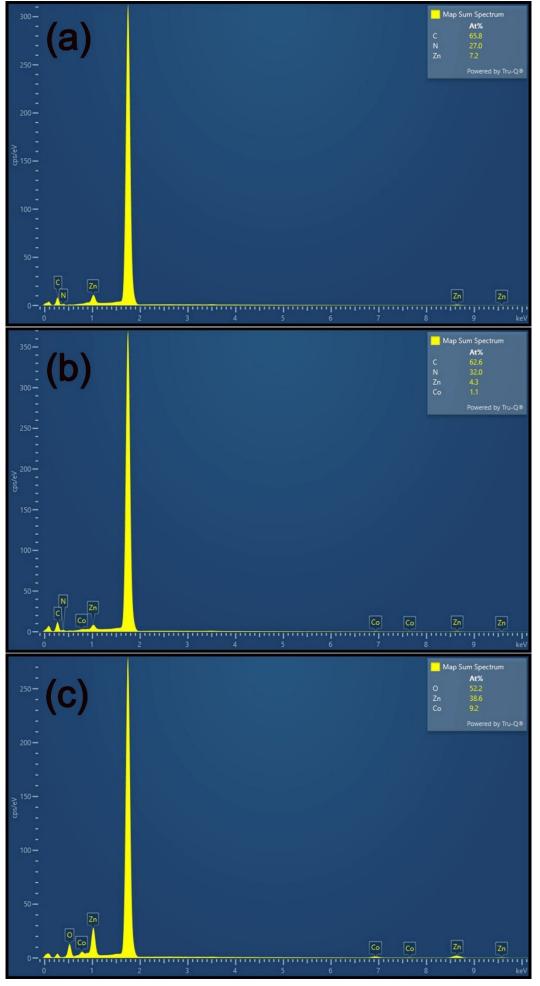


Fig. S2 EDS spectra of (a) ZIF-8, (b)ZIF-8@ZIF-67, and (c)ZnO@Co₃O₄.

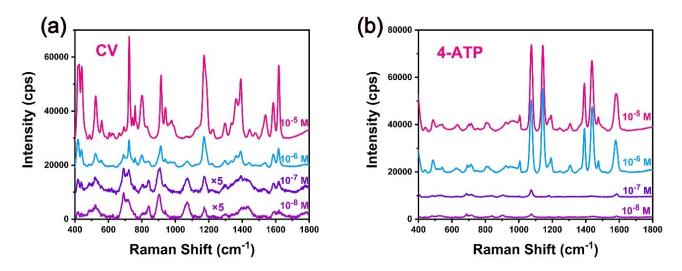
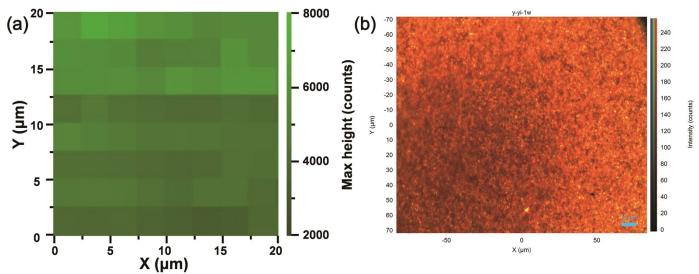



Fig. S3 SERS spectra obtained from different concentrations of (a) CV and (b) 4-ATP dropped on the $ZnO@Co_3O_4@Ag$ substrate.

Fig. S4 (a) SERS mapping of the 1172 cm⁻¹ peak of CV adsorbed on the ZnO@Co₃O₄@Ag substrate; (b) Electron microscopic image of substrate.

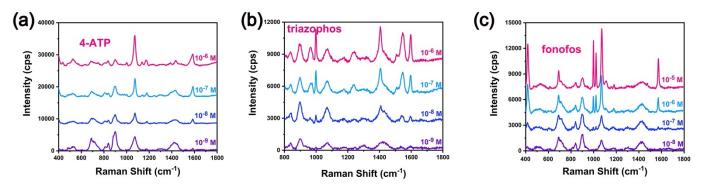


Fig. S5 SERS spectra obtained from the $ZnO@Co_3O_4@Ag$ substrate immersed at different concentrations of (a)4-ATP, (b) triazophos, and (c) fonofos for 2h.

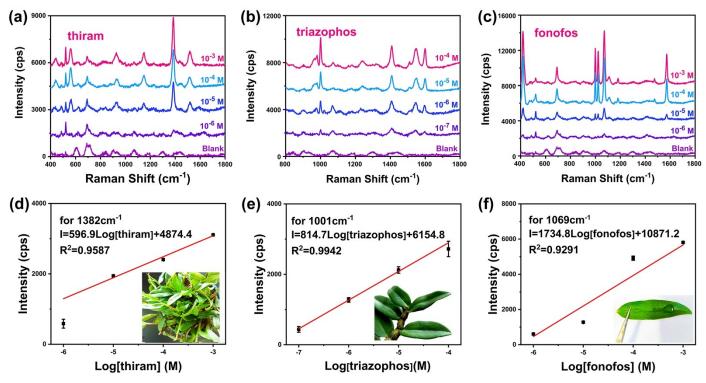


Fig. S6 SERS spectra obtained from dendrobium leaves with different concentrations of (a) thiram, (b) triazophos and (c) fonofos using $ZnO@Co_3O_4@Ag$ sensor. (d-f) Corresponding linear relationship between Raman intensity and detected concentrations.

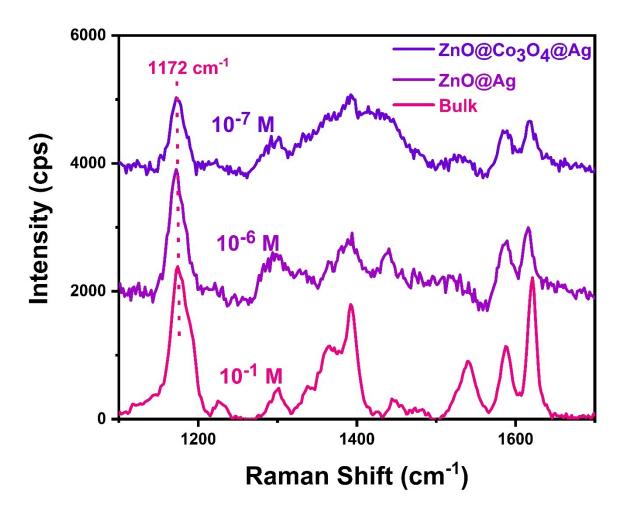


Fig. S7. SERS spectra obtained from bulk CV (10⁻¹ M), ZnO@Ag substrate with CV (10⁻⁶ M) and ZnO@Co₃O₄@Ag substrate with CV (10⁻⁷ M)

Calculation of SERS enhancement factor (EF)

To quantify the enhancement contribution from ZnO@Ag and $ZnO@Co_3O_4@Ag$ substrates, we calculated their enhancement factor (EF) based on the following formula:

$$EF = (I_{SERS} / I_{BULK}) \times (N_{BULK} / N_{SERS})$$

where I_{SERS} and I_{BULK} represent the intensities of SERS and normal Raman scattering, whereas N_{SERS} and N_{BULK} , respectively, denote the numbers of corresponding CV molecules effectively excited by a laser beam. According to the above formula, the EF for the ZnO@Ag substrate is calculated to be 7.45×10^5 . The EF is calculated to be 4.95×10^6 for the ZnO@Co₃O₄@Ag substrate.

 $N_{BULK} = (Laser spot area/Diffusion area) * (N_A * Volume_{BULK} * Concentration_{BULK})$

$$N_{SERS} = (Laser spot area/Substrate area) * (N_A * Volume _{SERS} * Concentration _{SERS})$$

Diffusion area= π (d/2)²=0.5027cm²

Substrate area=0.25cm²

Volume _{BULK} =Volume _{SERS}

Concentration $_{BULK} = 10^6 * Concentration _{SERS}$

 $N_{BULK} / N_{SERS} = (0.25/0.5027) \times 10^6 = 5 \times 10^5$

- $I = intensity of the 1172 cm^{-1} peak$
- I _{BULK}=29088.9 a.u.
- I _{SERS}, _{ZnO@Ag}=43493.9 a.u.
- I SERS, ZnO@Ag/I BULK=1.49
- $EF = (I_{SERS} / I_{BULK}) \times (N_{BULK} / N_{SERS}) = 7.45 \times 10^5$
- $I_{SERS, ZnO@Co3O4@Ag} = 28826.6 a.u.$
- $I_{SERS,\ ZnO@Co3O4@Ag}\ /I_{BULK}\!\!=\!\!0.99$
- $\label{eq:EF} \text{EF}{=}\left(I_{\text{SERS}} \, / I_{\text{BULK}}\right) \times \left(N_{\text{BULK}} \, / N_{\text{SERS}}\right) {=} 4.95 {\times} 10^6.$