A flexible and fully recyclable transparent conductive organogel based

on KI-containing glycerol with excellent anti-freezing and anti-drying

behavior

Jiaqing He^a, Kaixiang Yang^a, Qiang Zhou^a, Yongjun Xie^a, Gang Zou^{a*}and Haiyang Yang^{a*}

^a CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China. E-mail: yhy@ustc.edu.cn

Figure S1 (a)Preparation of HEAA-KI–Gly conductive organoels. (b) GPC profile of PHEAA-KI-Gly organogels with different exposure durations under UV light. H_2O was used as the eluent. (c) The effect of different polymerization times contents on the mechanical properties of the HEAA-KI-Gly organogel.

Table 1 Proportions of	different substances in	the preparation	of the HEAA-KI–G	ily organogel.
------------------------	-------------------------	-----------------	------------------	----------------

HEAA	photo-initiator	KI	Glycerol
4.5g	0.045g	Og	0.55g
5.0g	0.05g	0.5g	0.5g
5.25g	0.0525g	1.0g	0.475g
5.5g	0.055g	1.5g	0.45g

Figure S2 (a) Schematic of the conduction mechanism of the KI-Gly solution, (b) Viscosity variation of glycerol, KI-Gly solution and NaCI-Gly solution at temperatures ranging from 20.0 to 70.0 °C.

Figure S3 FT-IR spectra of a) HEAA hydrogel, b) HEAA-Gly organogel and c) HEAA-KI-Gly organogel.

b

а

Figure S5 The effect of different HEAA monomer contents on the electrical conductivity of organogels.

Figure S6 DSC thermograms of HEAA-KI-Gly organogels, HEAA-Gly organogels and HEAA hydrogels.

Figure S7 TGA thermograms of (a)HEAA hydrogel, (b)HEAA organohydrogel, and (c)HEAA-Gly organogel

Figure S8 (a) The effect of different temperature contents on the mechanical properties of the HEAA-KI-Gly organogel. (b) Adhesion strength of organogels with different different temperature. (c) Relative resistance changes ($\triangle R/R0$) at different temperatures under 100% tensile strain

Figure S9 (a) Relative resistance changes ($\triangle R/R0$) response time of organogels under 800% strain. (b) The durability test under repeated strains of 500% for 50 cycles.

Figure S10 Comparison of quality (a) and conductivity (b) of organic gel films before and after recycling. (c) Raman Spectroscopy of PHEAA-KI-Gly organogel, PHEAA-KI-Gly/water organohydrogel, PHEAA-KI-Gly regenerated organogel and PHEAA-KI hydrogel.

Figure S11 Swelling pictures(a) and swelling ratios(b) of organogel before and after swelling in different low polarity solvents. (c) Illustration of hydrogel sensors applied in solvents. (d) Real-time relative resistance variation of sensors with stretching (under 50% strain) in various solvents. Mutual solubility of solvents with different polarities and glycerol (e)before oscillation and (f) after oscillation

Table 2 Comparison of the performance of glycerol organogels and glycerol water organohydrogels

Materials(G/W organohydrogel)	Temperature range of application	Stretchability	Recyclability	Adhesiveness
PDA-CNTs-PACA ¹	-20°C to 60°C	600%	no	60KPa
PVA-HEC ²	-30℃ to 65℃	400%	no	no
PVA-PANi ³	-20°C	472%	yes	no
PEDOT:PSS-SF ⁴	-40 °C to 60 °C	100%	no	no
P(AM-MAANa-DMC)⁵	-20°C	1500%	no	no
PDMAPS-SA ⁶	-25°C to 25°C	50%	no	no
PAA-CNF ⁷	-46°C	980%	no	25КРа
P(SBMA-HEAA) ⁸	-30°C to 60°C	600%	no	21KPa
This work	-60°C to 70°C	1200%	yes	300КРа

Notes and references

- 1. L. Han, K. Liu, M. Wang, K. Wang, L. Fang, H. Chen, J. Zhou and X. Lu, *Advanced Functional Materials*, 2018, **28**, 1704195.
- 2. X. Wang, X. Wang, M. Pi and R. Ran, *Chemical Engineering Journal*, 2022, **428**, 131172.
- 3. C. Hu, Y. Zhang, X. Wang, L. Xing, L. Shi and R. Ran, *ACS Appl Mater Interfaces*, 2018, **10**, 44000-44010.
- 4. J. Liu, H. Wang, R. Ou, X. Yi, T. Liu, Z. Liu and Q. Wang, *Chemical Engineering Journal*, 2021, **426**, 130722.
- 5. X. Li, L. Kong and G. Gao, *J Mater Chem B*, 2021, **9**, 2010-2015.

- 6. S. Tian, M. Wang, X. Wang, L. Wang, D. Yang, J. Nie and G. Ma, *ACS Biomater Sci Eng*, 2022, **8**, 1867-1877.
- 7. Z. Zhou, K. Liu, Z. Ban and W. Yuan, *Composites Part A: Applied Science and Manufacturing*, 2022, **154**, 106806.
- 8. K. Yang, J. He, Q. Zhou, X. Hao, H. Yang and Y. You, *Polymer*, 2021, **214**, 123354.