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Measurements and characterizations 
1H NMR (400 MHz) and 13C NMR (100 MHz) were measured with a Bruker AVANCE 

400 spectrometer in deuterated trichloromethane (CDCl3). Chemical shifts are given in 

ppm units using tetramethylsilane (TMS) as an internal standard. Mass spectra were 

collected on an Autoflex MAX mass spectrometer. Molecular weights of the polymers 

were measured on Angilent Technologies PL-GPC 220 high-temperature-

chromatograph at 150 °C using a calibration curve of polystyrene standards and 1,2,4-

trichlorobenzene as the eluent. Thermo-gravimetric analysis (TGA) was measured by 

Diamond TG/DTA under the protection of nitrogen at a heating rate of 10 °C /minute. 

UV–vis absorption spectra were obtained by Lambda-950 (Perkin Elmer Instruments 

Co. Ltd., America). The solution samples were prepared using CF solvent with a 

concentration of 0.01mg/ml. And temperature-dependent UV absorption spectra were 

prepared using CB solvent, the absorption spectrum was measured for each 20°C 

increase in temperature (from 30°C to 110°C). The molecular energy levels were 

measured by utilizing CHL600E Electrochemical Workstation via cyclic voltammetry 

methods. The Pt plate coated with a thin film was employed as working electrode, an 

Ag/AgCl reference electrode and a Pt wire counter electrode were also employed as the 

another two of the three electrodes. The measurements were carried out in anhydrous 

acetonitrile with tetrabutylammonium hexafluorophosphate (0.1mol L-1) under the 

argon atmosphere at a scan rate of 100mV/s. The ferrocene/ferrocenium redox couple 

(Fc/Fc+) was employed to calibrate the potential of Ag/AgCl reference electrode. The 

J−V curves were measured in air with a Keithley 2420 source measure unit. An Oriel 

Newport 150W solar simulator was used to carry out the AM 1.5G irradiation condition 

and the light intensity was calibrated with a Newport reference detector (Oriel PN 

91150V). An Oriel Newport system (Model 66902) was applied for the external 

quantum efficiency (EQE) measurements of the devices in air. The mobility of electron-

only and hole-only devices were tested by a Newport Thermal Oriel 91159A. Highly 

sensitive EQE was measured by using an integrated system (PECT-600, Enlitech), in 

which the photocurrent was amplified and modulated by a lock-in instrument. EQEEL 
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values were obtained by applying external voltage/current sources through the devices 

(ELCT-3010, Enlitech). EQEEL measurements were performed for all devices 

according to the optimal device preparation conditions. TRPL was recorded by TCSPC 

(Becker & Hickl, SPC-150).Two-dimensional grazing incidence wide angle X-ray 

scattering (2D-GIWAX) analyses were measured at the XEUSS SAXS/WAXS 

equipment. The data were obtained with an area Pilatus 100k detector with a resolution 

of 195 × 487 pixels (0.172 mm × 0.172 mm). The X-ray wavelength was 154 nm, and 

the incidence angle was 0.2°. The samples were spin-coated onto the PEDOT: PSS/Si 

substrate with the optimized device fabrication conditions. AFM images were obtained 

on a Multimode 8 HR in the intelligent mode. 

OPV device fabrication and characterization of photovoltaic cells

The cleaned glass substrates with ITO electrode were used, the ITO glass substrates 

were blown by nitrogen gas and was put into an ultraviolet ozone chamber for 15 

minutes before using. Then the PEDOT: PSS was spin-coated onto the ITO glass (3000 

r/min) and heated at 150°C for 15 min. The optimal Donor: Acceptor (D: A) ratio was 

1:1.5 (w/w) for all polymers, were dissolved in chloroform (CF) with a total 

concentration of 15 mg/mL for 1 hour at 50°C and then the active layers were spin-

coated onto the substrates with specific speed (Table S1-S3) at a glove box filled with 

nitrogen. The PDINO was spin-coated onto the ITO glasses with a speed 3000 r/min. 

Finally, negative electrode aluminum was evaporated onto the surface of the active 

layer.

Carrier mobility characterization 

The carrier mobilities of the polymers were estimated by the space charge limited 

current (SCLC) method. The hole only devices were fabricated with the order 

ITO/PEDOT: PSS/active layer/Au and the electron mobility of the blends were with 

the structure of ITO/TiOx/active layer/PDINO/Al. The SCLC model can be operated 

followed Mott-Gurney law, as the equation J=(9/8)𝜀0𝜀𝑟µ (V2/L3) ,  J is the current 
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density, ε0 is the permittivity of free space, εr is the relative dielectric constant of the 

transport medium, μ is the carrier mobility, V is the internal potential in the device and 

L is the film thickness of the active layer. For example: The thickness of three active 

layer based on PIDTT-Th: Y6/PIDTT-Ph: Y6/PIDTT-PhF: Y6 are estimated to be 

101.73, 107.55, and 90.83nm for the electron-only devices and 100.26, 104.30 and 

119.35 nm for the hole-only devices, respectively.

Quantum chemical calculations: 

The quantum chemical calculations were performed using density functional theory 

(DFT) B3LYP functional with the 6-31G (d, p) basis set. Alkyl chains were replaced 

by methyl groups to simplify the structures and reduce the calculation costs.

Materials and Synthesis

Materials 

All chemicals and solvents were reagent grades, which were purchased from Alfa, 

ACMEC, Bidepharm, TCI, J＆K Scientific, Beijing Chemical Plant or other chemical 

companies. Chemicals and solvents were used without further purification (unless 

otherwise noted). Monomer 1 was purchased from above companies and monomer 2, 

monomer 3 were synthesized according to the reported procedures.1, 2

Synthesis of monomer 3
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Synthesis of diethyl 2,5-bis(thieno[3,2-b]thiophen-2-yl)terephthalate compound 2: 

Diethyl-2,5-dibromoterephthalate (1) (380 mg, 1.0 mmol), tributyl(thieno[3,2-

b]thiophen -2-yl)stannane (944.39 mg, 2.2 mmol) and catalyst were added to a 50 mL 

Schlenk flask and then 18 mL toluene was dropped into the flask. The reaction flask 

was vacuumed, then filled with nitrogen and repeated several times. The reaction flask 

was then stirred at 110 ℃ for 24 hours. After the reaction, the solution was cooled to 

room temperature, the organic phase was extracted with dichloromethane, and the 

excess solvent was removed by spin evaporation. Crude product was purified by 

column chromatography using DCM/PE (1:5) as the eluent. Orange solid was obtained 

with a yield of 90% (0.45 g). 1H NMR (400 MHz, Chloroform-d): δ 7.92 (s, 2H), 7.43 

(d, J = 5.3 Hz, 2H), 7.35 – 7.29 (m, 4H), 4.27 (q, J = 7.1 Hz, 4H), 1.16 (t, J = 7.1 Hz, 

6H); 13C NMR (101 MHz, CDCl3): δ 13.84, 61.83, 76.72, 77.04, 77.36, 119.31, 119.43, 

127.40, 132.09, 133.81, 134.10, 139.39, 139.94, 142.03, 167.46; MALDI-TOF MS:  

calcd for C24H18O4S4, 498.0 (m/z); found, 498.1(M+).

Synthesis of compound 3:

Compound 2 (997.29 mg, 2.0 mmol) was dissolved into 15 mL THF. The solvent was 

cooled to -78°C and n-butyllithium was added under nitrogen protection. After 1 h 

stirring, 4-bromo-2-fluoro-1-hexylbenzene (2.30 g, 9.6 mol) was added into the flask. 

Then the solvent was warmed naturally to room temperature and reacted overnight. The 

crude product was extracted with ethyl acetate and proceeded directly to the next step 

reaction. 

The crude product was dissolved into 50 mL acetic acid and then 2.88 mL 

concentrated sulfuric acid was slowly dropped into the solution. The reaction was 

stirred 2 h at 120℃, then cooled to room temperature. After extracted with n-hexane 

and dichloromethane, the excess solvent was removed by spin evaporation. Then the 

crude product was purified by column chromatography using DCM/PE (1:10) as the 

eluent. Orange solid was obtained with a yield of 26% (0.57g). 1H NMR (400 MHz, 

Chloroform-d): δ 7.50 (s, 2H), 7.33 (s, 4H), 7.12 (t, J = 8.0 Hz, 4H), 7.04 – 6.90 (m, 

8H), 2.60 (t, J = 7.8 Hz, 8H), 1.66 – 1.56 (m, 9H), 1.43 – 1.33 (m, 11H), 1.33 – 1.25 
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(m, 14H), 0.90 (q, J = 7.1 Hz, 13H); 13C NMR (101 MHz, CDCl3) δ 0.02, 14.08, 22.58, 

28.78, 29.17, 30.00, 31.63, 62.53, 76.71, 77.03, 77.35, 114.88, 115.11, 116.91, 120.49, 

123.56, 123.59, 123.85, 126.82, 128.70, 128.86, 130.59, 130.65, 133.35, 133.44, 

136.19, 141.99, 142.03, 142.06, 143.33, 143.38, 143.46, 145.04, 152.40, 152.55, 

152.63, 159.80, 162.23; MALDI-TOF MS: calcd for C68H70F4S4, 1090.4 (m/z); found, 

1090.5 (M+).

Synthesis of compound 4:

 Compound 4 (218.31 mg, 0.2 mmol) was dissolved into 15 mL THF. The solvent was 

cooled to -78℃ and n-butyllithium was added under the nitrogen protection. After 

stirring for 1 h, (CH3)3SnCl (119.56 mg, 0.6 mmol) was added and then the mixture 

was stirred overnight. The crude product was extracted with chloroform, and purified 

by recrystallization, yield yellow solid was obtained with a yield of 83% (0.20 g). 1H 

NMR (400 MHz, Chloroform-d): δ 7.46 (s, 2H), 7.35 (s, 2H), 7.12 (t, J = 8.0 Hz, 4H), 

7.05 – 6.90 (m, 8H), 2.60 (t, J = 7.8 Hz, 8H), 1.65 – 1.56 (m, 10H), 1.41 (s, 1H), 1.39 

– 1.31 (m, 18H), 1.30 (d, J = 4.3 Hz, 5H), 0.90 (q, J = 6.9 Hz, 13H), 0.42 (s, 18H); 13C 

NMR (101 MHz, CDCl3): δ -8.07, 13.93, 14.09, 22.23, 22.59, 28.78, 28.80, 29.17, 

29.19, 29.99, 31.41, 31.64, 62.50, 76.71, 77.03, 77.34, 114.91, 115.15, 116.86, 123.65, 

123.68, 127.52, 128.52, 128.68, 130.52, 130.58, 136.33, 138.96, 141.06, 142.22, 

142.29, 143.32, 144.13, 144.51, 152.40, 159.77, 162.20; MALDI-TOF MS: calcd for 

C74H86F4S4Sn2, 1416.4 (m/z); found, 1416.3 (M+).

 

Synthesis of PIDTT-Th

Monomer 1 (201.78 mg, 0.15 mmol) , 4,7-bis(5-bromo-6-hexylthieno[3,2-b] thiophen-

2-yl)-5, 6-difluoro-2-(2-hexyldecyl)-2H-benzo[d][1,2,3]triazole (147.30 mg, 0.15 

mmol) and catalyst dissolved into 12 mL ultra-dry toluene. And then the reaction was 

stirred at 110 ℃ for 48 h. Red solid PIDTT-Ph was obtained with a yield of 90% 

(252.17 mg).
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Synthesis of PIDTT-Ph 

Monomer 2 (205.53 mg, 0.15 mmol), 4,7-bis(5-bromo-6-hexylthieno[3,2-b] thiophen-

2-yl)-5, 6-difluoro-2-(2-hexyldecyl)-2H-benzo[d][1,2,3]triazole (147.30 mg, 0.15 

mmol) and catalyst dissolved into 12 mL ultra-dry toluene. After stirring at 110 ℃ for 

48 h, red solid PIDTT-Th was obtained with a yield of 91% (255.38 mg).

Synthesis of PIDTT-PhF

Compound 3 (212.55 mg, 0.15 mmol), 4,7-bis(5-bromo-6-hexylthieno[3,2-b]thiophen-

2-yl)-5,6-difluoro-2-(2-hexyldecyl)-2H-benzo[d][1,2,3]triazole (147.30 mg, 0.15 

mmol) and catalyst were dissolved into 12 mL ultra-dry toluene. And then the reaction 

was stirred at 110℃ for 48 h. 265.06 mg red solid was obtained with a yield of 91%. 

Figure S1. 1H NMR spectrum of compound 2 at room temperature (400 MHz, 

Chloroform-d).
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Figure S2. 13C NMR spectrum of compound 2 at room temperature (101 MHz, CDCl3)

Figure S3. 1H NMR spectrum of compound 3 at room temperature (400 MHz, 

Chloroform-d).
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Figure S4. 13C NMR spectrum of compound 3 at room temperature (101 MHz, CDCl3)

Figure S5. 1H NMR spectrum of compound 4 at room temperature (400 MHz, 

Chloroform-d).
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Figure S6. 13C NMR spectrum of compound 4 at room temperature (101 MHz, CDCl3)

Figure S7. MS spectrum (MALDI-TOF) of compound 2.
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Figure S8. MS spectrum (MALDI-TOF) of compound 3.



S12

Figure S9. MS spectrum (MALDI-TOF) of compound 4.
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Figure S10. Temperature-dependent UV absorption spectra of (a) PIDTT-Th, (b) 
PIDTT-Ph, (c) PIDTT-PhF and (d) normalized absorption of blend films. 
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Figure S11. Density functional theory (B3LYP/6-31 G(d, p)) simulations of the three 
polymers.

 
Figure S12. Cyclic voltammetry curves of (a) PIDTT-Th, (b) PIDTT-Ph, and (c) 
PIDTT-PhF. 
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PIDTT-Th PIDTT-Ph PIDTT-PhF

ELUMO=-2.36eV

EHOMO=-4.64eV

ELUMO=-2.34eV

EHOMO=-4.61eV

ELUMO=-2.42eV

EHOMO=-4.74eV

Figure S13. The electronic cloud distribution and optimized molecular orbitals of 
PIDTT-Th, PIDTT-Ph and PIDTT-PhF based on DFT simulation. 
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Figure S15. 2D GIWAXS patterns of pure copolymers (a) PIDTT-Th, (b) PIDTT-Ph, 
and (c) PIDTT-PhF. 
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Figure S16. 1D profiles of pure films PIDTT-Th, PIDTT-Ph, and PIDTT-PhF (a) 
in-plane and (b) out-of-plane direction.

Table S1. Optical and electrochemical parameters of the three polymers and Y6.

λmax (nm) λonset (nm) HOMO LUMO HOMO LUMO Eg
opt

Materials
solution film film (eV)a (eV)a (eV)b (eV)b (eV)c

PIDTT-PhF 517 525 605 -5.38 -3.65 -4.74 -2.42 2.05

PIDTT-Ph 511 511 610 -5.27 -3.59 -4.61 -2.34 2.03

PIDTT-Th 510 511 610 -5.25 -3.59 -4.64 -2.36 2.03

Y6 733 817 910 -5.65 -4.10 – – 1.36

a LUMO and HOMO were calculated by CV curve; b LUMO and HOMO were calculated by DFT 
simulations; c The optical bandgaps were calculated by 1240/λonset. 

Table S2. The photovoltaic performance of Polymers: Y6 under different solvent 
additives. 

Device Additive VOC (V) JSC (mA cm-2) FF (%) PCE (%)

0.5%DIO 0.668 23.24 59.38 9.22

0.5%CN 0.713 21.09 56.4 8.48

PIDTT-Th: Y6

1:1.5

15 mg mL-1

TA 150℃
0.5%DPE 0.697 23.59 56.26 9.25

PIDTT-Ph: Y6 0.5%DIO 0.695 24.64 60.84 10.42
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0.5%CN 0.727 16.31 57.94 6.871:1.5

15 mg mL-1

TA 200℃
0.5%DPE 0.711 23.68 63.68 10.72

0.5%DIO 0.828 23.13 60.15 11.52

0.5%CN 0.86 14.46 48.32 6.01

PIDTT-PhF: Y6

1:1.5

15 mg mL-1

TA 150℃
0.5%OD 0.837 19.25 54.55 8.79

Table S3. The photovoltaic performance of Polymers: Y6 under different thermal 
annealing temperature.

Device Annealing (℃) VOC (V) JSC (mA cm-2) FF (%) PCE (%)

150 0.762 19.68 58.56 8.78

170 0.707 21.71 59.43 9.12

PIDTT-Th: Y6

1:1.5

15 mg mL-1 200 0.622 21.7 61.75 8.34

150 0.79 18.25 51.18 7.38

170 0.771 20.33 54.87 8.6

PIDTT-Ph: Y6

1:1.5

15 mg mL-1 200 0.717 23.65 52.54 8.91

150 0.806 23.14 66.86 12.47

170 0.793 23.11 66.31 12.15

PIDTT-PhF: Y6

1:1.5

15 mg mL-1 200 0.777 23.52 63.2 11.55

Table S4. The photovoltaic performance of Polymers: Y6 under different D: A ratios.

Device D: A VOC (V) JSC (mA cm-2) FF (%) PCE (%)

1.0:1.5 0.707 21.71 59.43 9.12

1.0:1.0 0.71 22.75 58.2 9.4

PIDTT-Th: Y6

15 mg mL-1

TA 170℃ 1.5:1.0 0.71 22.53 58.2 9.31

1.0:1.5 0.771 20.33 54.87 8.6

1.0:1.0 0.787 16.07 46.03 5.82

PIDTT-Ph: Y6

15 mg mL-1

TA 170℃ 1.5:1.0 0.791 13.2 38.41 4.01
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1.0:1.0 0.88 11.78 41.2 4.27PIDTT-PhF: Y6

15 mg mL-1

TA 150℃
1.5:1.0 0.89 9.58 37.99 3.24

Table S5. Summary of device parameters of IDTT-based polymer as donor in OPVs. 

Donor Acceptor VOC (V) JSC (mA cm-2) FF PCE (%) Ref.

PIDTT-DFBT PC71BM 0.95 12.21 0.61 7.03 2

PIDTTFBT PC71BM 0.90 10.08 0.46 4.20 3

PIDTTTPD PC71BM 0.90 7.99 0.60 4.30 3

PIDTT-TzTz PC71BM 0.90 10.41 0.59 5.53 4

PIDTT-TzTz PC71BM 0.90 10.99 0.59 5.90a 4

PIDTT-TzTz-TT PC71BM 0.89 9.51 0.52 4.40 4

PIDTT-Q-p PC71BM 0.83 7.20 0.63 3.70 5

PIDTT-Q-m PC71BM 0.81 11.80 0.70 6.70 5

PIDTT-QF-p PC71BM 0.92 6.70 0.60 3.70 5

PIDTT-QF-m PC71BM 0.95 5.70 0.63 3.30 5

PIDTTQ PC71BM 0.84 11.45 0.62 6.01 6

PIDTT-F-PhanQ-EH PC71BM 0.90 10.31 0.55 5.14 7

PIDTT-DFBT-EH PC71BM 0.95 11.16 0.52 5.48 7

PIDTT-DFBT-T PC71BM 0.91 9.50 0.50 4.40 8

PIDTT-DFBT-TT PC71BM 0.96 11.90 0.63 7.20 8

PIDTT-T-DFBT PC71BM 0.92 10.40 0.54 5.26 9

PIDTT-DTBTz PC71BM 0.84 9.73 0.62 5.07 10

PIDTT-BTz PC71BM 0.90 9.37 0.54 4.55 10

PIDTT-TT PC71BM 0.96 10.96 0.65 6.98 11

PIDTT-TID PC71BM 1.00 12.60 0.53 6.70 12

PhIDTT-Q PC71BM 0.81 9.69 0.58 4.30 13

PhIDTT-QF PC71BM 0.90 8.11 0.54 3.80 13

ThIDTT-Q PC71BM 0.87 10.50 0.58 5.30 13

ThIDTT-QF PC71BM 0.92 10.90 0.53 5.10 13

CTL1 PC71BM 0.83 12.50 0.55 6.20 14

CTL2 PC71BM 0.87 11.20 0.55 5.30 14

CTL3 PC71BM 0.92 11.20 0.60 6.10 14

CTL4 PC71BM 0.85 6.30 0.54 2.90 14

CTL5 PC71BM 0.87 8.70 0.49 3.80 14

CTL6 PC71BM 0.88 9.50 0.48 3.90 14

PIDTT-DFQ-T PC71BM 0.92 11.4 0.66 6.90 15

PIDTT-DFQ-Se PC71BM 0.89 12.3 0.65 7.10 15

PIDTT-DTBO PC71BM 0.88 10.50 0.49 4.47 16

PIDTT-DTBT PC71BM 0.86 10.20 0.56 4.79 16

PIDTT-DTBT PC61BM 0.81 5.51 0.46 2.05 17

PIDTT-TBT PC71BM 0.88 11.08 0.60 5.84 17
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PIDTT-TFBT PC61BM 0.95 5.95 0.52 2.92 17

PIBTO-T PC71BM 0.87 12.09 0.62 6.52 18

PIBTO-TT PC71BM 0.88 13.06 0.65 7.52 18

2T-3MT PC71BM 0.92 7.35 0.48 3.28 19

PIDTT-Qx PC71BM 0.92 9.30 0.53 4.54 20

PIDTT-quinoxaline PC71BM 0.84 11.26 0.53 5.05 21

PIDTT-QxN2 PC71BM 0.75 11.73 0.56 4.90 22

IDTT-QxCN PC71BM 0.89 12.26 0.51 5.47 23

2T-3MT IM-IDT 1.01 6.81 0.58 3.96 19

2T-3MT ITIC 0.99 4.78 0.35 1.67 19

PIDTTQ PC71BM 0.84 8.62 0.60 4.32 24

P1 PC71BM 0.81 10.87 0.47 3.95 24

IDTT-T1 PC71BM 0.92 11.25 0.62 6.58 25

XPL4 PC71BM 0.94 11.11 0.54 5.85 26

XPL6 PC71BM 0.95 9.50 0.55 5.13 26

PhIDTT-TQxT PC71BM 0.82 11.21 0.47 4.29 27

PIDTT-DTNT-C16 PC71BM 0.83 4.67 0.34 1.30 28

PIDTT-DTNT-HD PC71BM 0.83 9.35 0.43 3.31 28

PIDTT-DTNT-OD PC71BM 0.80 3.70 0.34 1.02 28

PIDTT-Phza PC71BM 0.86 13.60 0.58 6.70 29

PIDTT-Qx PC71BM 0.81 15.10 0.57 7.20 29

PIDTT-O PC71BM 0.85 8.64 0.55 4.06 30

PIDTT-S PC71BM 0.86 9.92 0.72 6.12 30

PIDTT-QxM Y6BO 0.73 23.25 0.61 10.40 31

PIDTT-DTffBTA Y6 0.74 22.70 0.66 11.05 32

a inverted device 

Table S6. The detailed corresponding carrier mobility data of the three compounds

Blend
Electron mobility

(cm2 V-1s-1)
Thickness 

(nm)
Hole mobility

(cm2 V-1s-1)
Thickness 

(nm)

PIDTT-Th: Y6 1.9×10-4 101.73 3.8×10-5 100.26

PIDTT-Ph: Y6 3.4×10-4 107.55 1.7×10-4 104.3

PIDTT-PhF: Y6 2.3×10-4 90.83 2.4×10-4 119.35

Table S7. The detailed energy losses of OPVs based on PIDTT-Th: Y6, PIDTT-Ph: 
Y6 and PIDTT-PhF: Y6. 

Blend
Eg 

(eV)

ECT 

(eV)

VOC 

(V)

ΔE

(eV)

ΔE1

(eV)

ΔE2

(eV)

ΔE3

(eV)

EQEEL

(%)

PIDTT-Th: Y6 1.386 1.35 0.71 0.676 0.036 0.300 0.340 2.01×10-4

PIDTT-Ph: Y6 1.384 1.36 0.71 0.674 0.024 0.316 0.334 2.45×10-4
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PIDTT-PhF: Y6 1.384 1.37 0.81 0.574 0.014 0.318 0.242 8.87×10-3

Table S8. The detailed parameters of GIWAXS measurement.

In-plane Out-of-plane
Films

(100) d (Å) (010) dπ-π (Å) FWHM (Å) CL (Å)

PIDTT-Th 0.34 18.32 1.43 4.39 0.55 10.69

PIDTT-Ph 0.34 18.32 1.43 4.39 0.57 10.18

PIDTT-PhF 0.34 18.71 1.47 4.28 0.55 10.66

PIDTT-Th:Y6 0.28 22.60 1.75 3.59 0.35 16.60 

PIDTT-Ph:Y6 0.27 23.02 1.75 3.59 0.32 18.09 

PIDTT-PhF:Y6 0.27 23.02 1.75 3.59 0.37 15.83 
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