Giant and reversible photoluminescence modulation based on *in situ*

electric-field-controlled antiferroelectric-ferroelectric phase transition

Yu Zhang^a, Ying Huang^a, Wuming Xue^a, Xiao Wu^a, Chunlin Zhao^a, Tengfei Lin^a, Cong Lin^a, Min Gao^{a*}

^a College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108,

China

*Corresponding author.

Email: gaom@fzu.edu.cn

Figure S1. Scanning electron microscopy (SEM) image of the 0.5 mol% Er^{3+} doped $Pb_{0.96}La_{0.04}Zr_{0.9}Ti_{0.1}O_3$ (PLZT-Er) ceramic, and corresponding energy-dispersive X-ray spectroscopy (EDS) images that demonstrate the homogeneity of the elemental distribution.

Figure S2. (a) (b) Maximum polarization (P_{max}) and remnant polarization (P_r) of PLZT and PLZT-Er under various maximum electric fields (*E*). (c) (d) Maximum strain (s_{max}) and remnant strain (s_r) of PLZT and PLZT-Er under various maximum electric fields (*E*). (a) (c) Pure PLZT, and (b) (d) PLZT-Er.

Figure S3. Photoluminescence (PL) enhancement ratio as a function of applying *E* from 0 to 80 kV cm⁻¹: (a) 540 nm, and (b) 564 nm. Two distinguishable states are marked.

Figure S4. Temperature dependent *P*-*E* curves of PLZT-Er sample at E = 80 kV cm⁻¹.

Figure S5. (a) PL enhancement ratio of PLZT-Er under an alternate *E* between 0 and 80 kV cm⁻¹. (b) PL enhancement ratio of the PLZT-Er ceramic under a cycle of *in situ E* between 0 and 80 kV cm⁻¹. Six nonlinear change sections (I to VI) and two distinguishable PL states are marked in (b). The PL band is at 540 nm.