Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

for

Dion-Jacobson A'M^{III}NaNb₃O₁₀ (A' = Rb, Cs; M(III) = Sm, Bi), RbSmNa₂Nb₄O₁₃ layered perovskites and their luminescent function

Fig. S1 EDS spectra of (a) $RbSmNaNb_3O_{10}$, (b) $RbBiNaNb_3O_{10}$, (c) $CsSmNaNb_3O_{10}$, (d) $CsBiNaNb_3O_{10}$.

Fig. S2 FESEM images of (a) RbSmNaNb₃O₁₀, (b) RbBiNaNb₃O₁₀, (c) CsSmNaNb₃O₁₀, and (d) CsBiNaNb₃O₁₀.

Fig. S3 Experimentally observed PXRD pattern of $CsLaNaNb_3O_{10}$ (data in red), profile matching (data in black), difference profile (data in blue), and vertical bars (data in green) indicating Bragg reflections.

and 5 mol % (vii) Tb³⁺-doped samples.

Fig. S5 EDS spectra of RbSmNaNb₃O₁₀ doped with (a) 1, (b) 2, (c) 5, (d) 7, (e) 10 mol % Eu³⁺ and (f) 5 mol % Tb³⁺.

Fig. S6 SEM images of RbSmNaNb₃O₁₀ doped with (a) 1, (b) 2, (c) 5, (d) 7, (e) 10 mol % Eu³⁺ and (f) 5 mol % Tb³⁺.

Fig. S7 TG traces of (a, b) proton and (c, d) sodium exchanged samples of parent $RbSmNaNb_3O_{10}$ and $RbBiNaNb_3O_{10}$, respectively.

Fig. S8(a) PXRD patterns of RbSmNaNb₃O₁₀ (i) and the ion-exchanged products Na(SmNa)Nb₃O₁₀·2H₂O (ii), K(SmNa)Nb₃O₁₀ (iii), and (b) PXRD patterns of RbBiNaNb₃O₁₀ (i) and the ion-exchanged products Na(BiNa)Nb₃O₁₀·2H₂O (ii), K(BiNa)Nb₃O₁₀ (iii).

Fig. S9 (a) PL excitation and (b) emission spectra of RbSmNaNb₃O₁₀ sample.

Fig. S10 Excitation spectra of RbSmNaNb₃O₁₀ doped with 5 mol % Eu^{3+} doped samples.

Atoms	Wyckoff position	x/a	<i>y/b</i>	z/c	SOF	U(iso)Ų
Cs1	4 <i>c</i>	0.2574(1)	0.2624(9)	0.25	1	0.0251(14)
Cs2	4c	0.2465(2)	0.7498(1)	0.25	1	0.0254(17)
Sm/Na1	4c	0.0720(4)	0.2722(2)	0.25	0.5	0.0243(28)
Sm/Na2	4c	0.0722(3)	0.7605(2)	0.25	0.5	0.0247(26)
Sm/Na3	4c	0.4253(4)	0.2468(18)	0.25	0.5	0.0247(14)
Sm/Na4	4c	0.4285(3)	0.7322(14)	0.25	0.5	0.0244(23)
Nb1	4a	0.0	0.0	0.0	1	0.0248(18)
Nb2	4b	0.0	0.5	0.0	1	0.0248(22)
Nb3	8 <i>d</i>	0.1402(3)	0.0084(11)	0.0021(10)	1	0.0236(14)
Nb4	8 <i>d</i>	0.3597(2)	0.0014(9)	0.0017(8)	1	0.0238(12)
01	8 <i>d</i>	0.1992(4)	0.516(5)	0.506(4)	1	0.015(4)
02	8 <i>d</i>	0.1983(4)	0.0236(35)	0.0185(29)	1	0.020(5)
03	8d	0.4347(5)	0.476(4)	0.0507(21)	1	0.022(6)
04	8d	0.0596(5)	0.170(1) 0.5480(26)	0.0307(21) 0.0423(27)	1	0.022(0) 0.043(8)
05	8d	0.0000(3)	0.2345(6)	0.0123(27) 0.0638(20)	1	0.047(7)
05	8d	0.0080(7) 0.1180(4)	0.2343(0) 0.2128(23)	0.506(4)	1	0.047(7)
07	8d	0.1100(4) 0.3722(5)	0.2120(23) 0.230(4)	0.500(4)	1	0.010(4) 0.015(4)
0	0 <i>u</i> 1 <i>a</i>	0.3722(3) 0.5075(2)	0.230(4)	0.300(3)	1	0.013(4)
	40	0.3073(2) 0.4826(0)	0.328(3)	0.25	1	0.017(9)
09	40	0.4630(9)	0.930(3)	0.25	1	0.043(13)
010	4 <i>C</i>	0.1189(5)	0.0156(6)	0.25	1	0.0235(12)
011	40	0.3799(8)	0.0115(3)	0.25	1	0.0252(10)
012	4 <i>c</i>	0.1324(6)	0.485(4)	0.25	l	0.0249(15)
Space grou $1.1, R_p = 3.$	p: <i>Pnam</i> (62); <i>a</i> 9 %, R _{wp} = 5.3 %	a (Å) = 30.2952(2)	, <i>b</i> (Å) = 7.7548(5)	, c (Å) = 7.7559(6)	$V(Å^3) = 182$	2.14(2); $Z = 8$; $\chi^2 =$
Cs1	4c	0.2570(2)	0.2574(18)	0.25	1	0.0288(18)
Cs2	4c	0.2470(1)	0.7499(21)	0.25	1	0.0300(17)
Bi/Na1	4c	0.0726(3)	0.2659(21)	0.25	0.5	0.0319(23)
Bi/Na2	4 <i>c</i>	0.0730(2)	0.7579(21)	0.25	0.5	0.0366(20)
Bi/Na3	4 <i>c</i>	0.4256(2)	0.2422(21)	0.25	0.5	0.0291(21)
Bi/Na4	4 <i>c</i>	0.4277(2)	0.7274(23)	0.25	0.5	0.0357(21)
Nb1	4b	0.0	0.5	0.0	1	0.0138(23)
Nb2	8 <i>d</i>	0.1415(7)	0.0072(10)	0.0016(7)	1	0.0222(19)
Nb3	8 <i>d</i>	0.3595(7)	0.0007(9)	0.0018(7)	1	0.0197(19)
Nb4	4a	0.0	0.0	0.0	1	0.0286(29)
01	8 <i>d</i>	0.2021(4)	0.491(6)	0.509(5)	1	0.026(10)
02	8 <i>d</i>	0.1978(4)	0.042(4)	0.021(4)	1	0.027(12)
03	8 <i>d</i>	0.4321(5)	0.4571(34)	0.0395(32)	1	0.051(10)
04	8 <i>d</i>	0.0552(4)	0.543(4)	0.026(4)	1	0.025(9)
05	8 <i>d</i>	0.0045(10)	0.2355(7)	0.0600(26)	1	0.014(6)
06	8 <i>d</i>	0.1208(5)	0.243(7)	0.520(6)	1	0.0249(11)
07	8 <i>d</i>	0.3650(5)	0.25065(31)	0.512(6)	1	0.031(7)
08	4c	0.5049(12)	0.552(7)	0.25	1	0.010(8)
09	40	0.4960(13)	0.552(7)	0.25	- 1	0.047(13)
010	40	0 1220(8)	0.002(7)	0.25	1	0.017(13)
011	40	0.3769(8)	0.0000(7)	0.25	1	0.012(13)
012	40	0.1306(8)	0.002(7)	0.25	1	0.02 + 4(13)
012	40	0.1500(0)	0.707(7)	0.25	1	0.057(17) 0.051(15)
Space offer	ті п. <i>Duam</i> (67).	$(\lambda) = 20.5260(0)$	$b(\lambda) = 7.7000(2)$	0.23 $a(\lambda) = 7.9059(2)$	$V(\lambda^3) = 1050$	0.031(13) 26(16). 7 - 9. a^{2} -
$1.2, R_p = 6.$	p. <i>r num</i> (62); a 7 %, R _{wp} = 8.7 %	(A) – 30.3200(9), %.	v(A) = 7.7990(2),	c(A) = 7.8038(2),	$r(A^2) = 1838$	$5.50(10); Z - 8; \chi^2 =$

Table S1(a) Positional, occupancies and thermal parameters of $CsSmNaNb_3O_{10}$ and $CsBiNaNb_3O_{10}$.

Atoms	Interatomic distances (Å)	Theoretical BVS	Calculated BVS
Cs1-O1	2.997(5) × 2	1.0	1.13
Cs1-O1	3.299(4) × 2		
Cs1-O2	3.127(5) × 2		
Cs1-O2	3.210(5) × 2		
Cs2-O1	$3.042(6) \times 2$	1.0	1.11
Cs2-O1	3.253(6) × 2		
Cs2-O2	3.148(6) × 2		
Cs2-O2	3.188(5) × 2		
Sm/Na1-O4	$2.723(10) \times 2$	2.0	2.03
Sm/Na1-O5	$2.434(18) \times 2$		
Sm/Na1-O6	$2.473(7) \times 2$		
Sm/Na1-O8	3.023(12) × 1		
Sm/Na1-O9	3.422(12) × 1		
Sm/Na1-O10	2.425(12) × 1		
Sm/Na1-O12	2.480(12) × 1		
Sm/Na1-O3	3.264(8) × 2		
Sm/Na2-O4	$2.393(9) \times 2$	2.0	1.97
Sm/Na2-O5	$3.442(7) \times 2$		
Sm/Na2-O7	$2.582(7) \times 2$		
Sm/Na2-O8	2.508(11) × 1		
Sm/Na2-O9	3.212(10) × 1		
Sm/Na2-O10	2.366(12) × 1		
Sm/Na2-O12	2.867(11) × 1		
Sm/Na2-O3	$2.830(7) \times 2$		
Sm/Na3-O13	2.361(12) × 1	2.0	2.22
Sm/Na3-O4	$2.808(8) \times 2$		
Sm/Na3-O5	2.912(12) × 2		
Sm/Na3-O7	2.512(7) × 2		
Sm/Na3-O8	3.300(12) × 1		
Sm/Na3-O9	2.912(12) × 1		
Sm/Na3-O11	2.307(12) × 1		
Sm/Na3-O3	$2.341(9) \times 2$		
Sm/Na4-O13	2.657(10) × 1	2.0	2.04
Sm/Na4-O4	$1.871(10) \times 2$		
Sm/Na4-O5	$3.090(11) \times 2$		
Sm/Na4-O6	2.363(6) × 2		
Sm/Na4-O8	2.876(10) × 1		
Sm/Na4-O9	2.366(10) × 1		
Sm/Na4-O11	2.596(11) × 1		
Sm/Na4-O3	2.558(9) × 2		

Table S1(b) Selected bond distances, theoretical and calculated BVS for $CsSmNaNb_3O_{10}$.

Nb1-O4	$1.871(10) \times 2$	5.0	4.78	
Nb1-O5	$2.131(6) \times 2$			
Nb1-09	$2.030(10) \times 2$			
Nb2-O2	$1.779(7) \times 1$	5.0	5.12	
Nb2-O13	$1.998(7) \times 1$			
Nb2-O6	$1.800(8) \times 1$			
Nb2-O7	$2.181(8) \times 1$			
Nb2-O10	$2.031(7) \times 1$			
Nb2-O3	$2.309(7) \times 1$			
Nb3-O1	$1.775(7) \times 1$	5.0	4.85	
Nb3-O4	$2.514(7) \times 1$			
Nb3-O6	$2.243(7) \times 1$			
Nb3-O7	$1.836(7) \times 1$			
Nb3-O11	$2.027(6) \times 1$			
Nb3-O12	$1.973(6) \times 1$			
Nb4-O5	$1.900(6) \times 2$	5.0	5.25	
Nb4-O8	$1.964(10) \times 2$			
Nb4-O3	$2.026(12) \times 2$			

Atoms	Interatomic distances (Å)	Theoretical BVS	Calculated BVS
Cs1-O1	3.185(4) × 2	1.0	1.05
Cs1-O1	3.122(6) × 2		
Cs1-O2	$3.068(5) \times 2$		
Cs1-O2	3.348(5) × 2		
Cs2-O1	$3.021(5) \times 2$	1.0	1.06
Cs2-O1	3.263(5) × 2		
Cs2-O2	3.209(6) × 2		
Cs2-O2	$3.211(5) \times 2$		
Bi/Na1-O4	$2.741(3) \times 2$	2.0	1.79
Bi/Na1-O5	$2.576(7) \times 2$		
Bi/Na1-O6	2.547(5) × 2		
Bi/Na1-O8	3.283(6) × 1		
Bi/Na1-O9	3.248(6) × 1		
Bi/Na1-O10	$2.498(4) \times 1$		
Bi/Na1-O12	2.494(3) × 1		
Bi/Na1-O3	3.246(5) × 2		
Bi/Na2-O4	2.391(6) × 2	2.0	1.89
Bi/Na2-O5	3.379(4) × 2		
Bi/Na2-O7	$2.696(5) \times 2$		
Bi/Na2-O8	2.621(6) × 1		
Bi/Na2-O9	2.847(6) × 1		
Bi/Na2-O10	$2.451(4) \times 1$		
Bi/Na2-O12	$2.767(3) \times 1$		
Bi/Na2-O3	$2.755(5) \times 2$		
Bi/Na3-O13	$2.872(3) \times 1$	2.0	1.89
Bi/Na3-O4	2.799(5) × 2		
Bi/Na3-O5	2.768(6) × 2		
Bi/Na3-O7	$2.721(5) \times 2$		
Bi/Na3-O8	3.362(5) × 1		
Bi/Na3-O9	3.147(6) × 1		
Bi/Na3-O11	2.293(4) × 1		
Bi/Na3-O3	$2.425(2) \times 2$		
Bi/Na4-O13	$2.705(2) \times 1$	2.0	1.74
Bi/Na4-O4	3.369(6) × 2		
Bi/Na4-O5	$3.248(3) \times 2$		
Bi/Na4-O6	2.413(4) × 2		
Bi/Na4-O8	2.652(5) × 1		
Bi/Na4-O9	2.688(2) × 1		
Bi/Na4-O11	2.667(5) × 1		
Bi/Na4-O3	2.659(2) × 2		

Table S1(c) Selected bond distances, theoretical and calculated BVS for CsBiNaNb₃O₁₀.

Nb1-O4	$1.828(5) \times 2$	5.0	5.20	
Nb1-O5	$2.120(5) \times 2$			
Nb1-09	$2.000(6) \times 2$			
Nb2-O2	$1.734(5) \times 1$	5.0	4.93	
Nb2-O13	1.963(6) × 1			
Nb2-O6	$2.073(6) \times 1$			
Nb2-O7	$2.000(7) \times 1$			
Nb2-O10	$2.033(6) \times 1$			
Nb2-O3	$2.356(7) \times 1$			
Nb3-O1	$1.860(5) \times 1$	5.0	4.73	
Nb3-O4	$2.558(7) \times 1$			
Nb3-O6	1.959(6) × 1			
Nb3-07	$1.958(5) \times 1$			
Nb3-O11	$2.027(6) \times 1$			
Nb3-O12	$1.987(6) \times 1$			
Nb4-O5	$1.900(2) \times 2$	5.0	5.07	
Nb4-O8	$1.994(6) \times 2$			
Nb4-O3	$2.039(6) \times 2$			