Supporting information for

Synthesis and Optical Properties of CsCu₂Br₃-Cu⁰ Nanoheterojunctions

Qifei Ying[†], Tingwei Hua[†], Yilin Wang[†], Xiangdong Liu[†], Yang Wei[†], Hongbo Li^{†*},

Ling Huang^{†‡}*

[†]Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
[‡]State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Materials,
College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, China
*E-mail: iamhbli@njtech.edu.cn; iamlhuang@njtech.edu.cn
Keywords: CsCu₂Br₃-Cu⁰, heterojunction, localized surface plasmon resonance, lattice
distortion, narrow-band dual emission

Experimental section

Materials

Cs₂CO₃ (99.9% Aldrich), octadecene (ODE, 90%, Aldrich), oleic acid (OA, 90%, Aldrich), oleylamine (OM, 70%, Aldrich), PbBr₂ (99.999%, Aldrich), CuBr₂ (98.5%, Aldrich), cyclohexane (99.7%, Aldrich), anhydrous ethanol (99.7%, Aldrich).

All chemicals were used as received without further purification.

Preparation of Cs-oleate solution: 0.2035 g (0. 62 mmol) Cs_2CO_3 was loaded into a 50 mL three-necked bottle, along with 10 mL ODE, 1.5 mL OA were put into a precleaned and dried under the protection of N₂, and then heated at 120 °C until all Cs_2CO_3 were dissolved.

Preparation of CsCu₂Br₃-Cu⁰ heterojunction NRs: 0.0587 g (0.16 mmol) PbBr₂, 0.1787 g (0.49 mmol) CuBr₂, 5 mL ODE, 0.7 mL OA, 0.7 mL OM were put into a precleaned and dried three-necked bottle, heated at 120 °C under vacuum and stirred for 15 minutes, and then heated to 200 °C under N₂ protection, kept stirring until the color of the solution in the three-necked flask turned dark brown. After continued stirring for 5 minutes,1 mL Cs-OA solution was injected, and cooled to room temperature in an ice-water about 5 s. The reaction solution is first washed by ODE centrifugation, the upper solution is poured out, the lower precipitation is purified by cyclohexane centrifugation, and the upper solution is stored in a glass bottle.

Preparation of CsCu₂Br₃ NCs: In the experiment of preparing CsCu₂Br₃, without adding PbBr₂, and other conditions remain unchanged, CsCu₂Br₃ nanocrystals are obtained.

Characterization

Transmission electron microscopy (TEM) and high-resolution TEM investigations were carried out on a JEM 2100F. The X-ray diffraction (XRD) measurements were performed on a Rigaku Ultima X-ray IV diffractometer using a Cu K α source at 3 deg·min⁻¹. Time-resolved photoluminescence (PL) measurements were performed using a time-correlated single photon counting setup (TCSPC) utilizing SPC-130-EM counting module and BDL-488-SMN pico-second laser. Horiba Jobin Yvon iHR 320 spectrometer equipped with a Synapse CCD was used to acquire luminescence spectra. X-ray photoelectron spectroscopy (XPS) measurements were performed using a Kratos AXIS Ultra. Auger electron spectroscopy (AES) measurements were performed using a ESCALAB 250XI-AES.

Figure S1. EDX spectrum of the CsCu₂Br-Cu⁰ heterojunction NRs.

Ζ	Element	Family	Atomic	Atomic	Mass	Mass	Fit
			Fraction	Error	Fraction	Error	Error
29	Cu	K	81.29%	9.10%	74.68%	6.14%	0.10%
35	Br	K	14.15%	2.24%	16.35%	2.28%	0.26%
55	Cs	L	4.34%	0.62%	8.33%	1.01%	0.29%
82	Pb	L	0.21%	0.03%	0.64%	0.08%	4.42%

Table S1. Results of semi-quantitative analysis of composite elements of $CsCu_2Br_3$ - Cu^0 heterojunction NRs.

Figure S2. XPS spectra (a) Cs, (b) Br elements of CsCu₂Br₃-Cu⁰ heterojunction NRs

Figure S3. (a) TEM image of CsCu₂Br₃. (b) XRD pattern of CsCu₂Br₃.

Sample	Wavelengt	τ ₁ (ns)	\mathbf{A}_{1}	τ ₂ (ns)	A_2	τ (ns)
	h (nm)					
CsCu ₂ Br ₃ -Cu ⁰	436	0.7588	1945.6686	3.7844	288.0584	2.0
CsCu ₂ Br ₃ -Cu ⁰	460	1.1947	1754.5323	4.9225	350.1296	2.9
CsCu ₂ Br ₃	500	2.2684	71112.155	15.3043	429.1701	2.8
			6			

 $\label{eq:solution} \textbf{Table S2.} \ PL \ decay \ parameters \ of \ CsCu_2Br_3-Cu^0 \ heterojunction \ NRs \ and \ CsCu_2Br_3 \ NCs.$

Space Group: C	Space Group: Cmcm (#63-1)								
a	9.8585 Å	α	90.0000°						
b	12.3479 Å	β	90.0000°						
с	5.7771 Å	γ	90.0000°						
Cu-Cu(a)	3.121 Å	Cu-Br1	2.390 Å						
Cu-Cu(c)	2.888 Å	Cu-Br2	2.611 Å						
V	703.256 Å ³								

Table S3. Lattice parameters of $CsCu_2Br_3$ in the $CsCu_2Br_3$ -Cu⁰ heterojunction NRs