Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Tailoring interlayer magnetic coupling to modify magnetic properties of FeCl2 bilayer by self-intercalation

Rui Li, Jiawei Jiang, Haili Bai* , Wenbo Mi[*](#page-0-0)

Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School

of Science, Tianjin University, Tianjin 300354, China

1

^{*} Author to whom all correspondence should be addressed.

E-mail: baihaili@tju.edu.cn

E-mail: miwenbo@tju.edu.cn

Table S1 Lattice constant *a* (Å), interlayer distance *d* (Å), bond length d_{Fe-Cl} (Å) of Fe-Cl, bond angle θ_1 ($^{\circ}$) of Cl-Fe-Cl, θ_2 (\degree) of Fe-Cl-Fe, formation energy E_f (eV) and magnetic ground state of FeCl₂ bilayer.

a	и	$a_{\text{Fe-Cl}}$	θ_1	θ_2	$E_{\rm f}$	Magnetic ground
3.507	3.0667	2.459	89.132	90.750	-0.895	AFM

	11%	25%	33%	67%	100%
J_{intra1}	108	48	36	36	
J_{inter}	18		υ		
J_{intra2}	U				
J_{inter2}					

Table S2 Neighboring number of exchange constants in self-intercalated FeCl₂ bilayer with different concentrations.

Fig. S1 Top and side views of Fe-intercalated FeCl₂ bilayer with concentration of (a) 11%, (b) 33%, (c) 67% and (d) 100%.

Fig. S2 (a) Top view of $FeCl₂$ bilayer of $2\times4\times1$ supercell. (b)-(f) Spin charge density of five different magnetic configurations. Pink and green areas represent the opposite spin states. The isosurface is 0.070 e/Bohr³.

The energy contributed by magnetic interaction in these magnetic orders in a unit cell can be expressed as

$$
E_{FM} = E_0 - (6J_{intra} + 6J_{intra} + J_{inter} + 6J_{inter}^{\prime})S^2
$$
 (S1)

$$
E_{AFM1} = E_0 - (6J_{intra} + 6J_{intra} - J_{inter} - 6J_{inter}^{\prime})S^2
$$
 (S2)

$$
E_{AFM2} = E_0 + \left(2J_{intra} + 2J_{intra} - J_{inter} + 2J_{inter} \right) S^2
$$
 (S3)

$$
E_{AFM3} = E_0 - (2J_{intra} - 2J_{intra} + J_{inter} + 2J_{inter}^{\dagger})S^2
$$
 (S4)

$$
E_{AFM4} = E_0 - \left(2J_{intra} - 2J_{intra} - J_{inter} - 2J_{inter} \right) S^2
$$
 (S5)

Here, J_{intra} and J_{inter} are the nearest-neighbor exchange constants of intralayer and interlayer, In Fig.

S1a and b, J_{inter} and J_{inter} are the second-nearest-neighbor exchange constants. The *J*>0 denotes the ferromagnetic order, while the *J*<0 represents the antiferromagnetic order. To investigate the contributions from more distant interaction, the second-nearest-neighbor exchange interaction are included in FeCl₂ bilayer. The J_{intra} , J_{inter} , J_{inter} and J_{inter} are 5.117, 0.241, -0.227 and -0.111 meV, respectively. The second-nearest-neighbor exchange constants are smaller than the nearest-neighbor exchange constants, so the second-nearest-neighbor magnetic coupling will not be considered in this work.

Fig. S3 Specific heat capacity as a function of temperature of the FeCl₂ bilayer.

Fig. S4 (a) Side view of 25% Fe-intercalated FeCl₂ bilayer. The red dash lines represent the exchange interaction between Fe sites. (b)-(f) Spin charge density of five different magnetic configurations. Pink and green areas represent the opposite spin states. The isosurface is 0.070 e/Bohr³.

The energy contributed by magnetic interaction in these magnetic orders in a unit cell can be expressed as

$$
E_{FM} = E_0 - \left(12J_{intra} + \frac{3}{2}J_{interl} + J_{intra2} + \frac{3}{2}J_{inter2}\right)S^2
$$
 (S6)

$$
E_{AFM1} = E_0 - \left(12J_{intra1} + \frac{3}{2}J_{inter1} - J_{intra2} + 2J_{inter2}\right)S^2
$$
 (S7)

$$
E_{AFM2} = E_0 - \left(12J_{intra1} - \frac{1}{2}J_{inter1} - 2J_{inter2}\right)S^2
$$
 (S8)

$$
E_{AFM3} = E_0 - \left(12J_{\text{intra1}} - \frac{1}{2}J_{\text{inter1}} + 2J_{\text{inter2}}\right)S^2
$$
 (S9)

$$
E_{AFM4} = E_0 + \left(4J_{intra1} + \frac{1}{2}J_{inter1} - 2J_{inter2}\right)S^2
$$
 (S10)

Fig. S5 Band structures and projected density of states of (a) FeCl₂ bilayer, (b) 11%, (c) 25%, (d) 33%, (e) 67% and (f) 100% Fe-intercalated FeCl₂ bilayer. The Fermi level is set at 0 eV.