Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Tailoring interlayer magnetic coupling to modify magnetic properties of FeCl₂ bilayer by self-intercalation

Rui Li, Jiawei Jiang, Haili Bai^{*}, Wenbo Mi^{*}

Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China

^{*}Author to whom all correspondence should be addressed.

E-mail: <u>baihaili@tju.edu.cn</u>

E-mail: miwenbo@tju.edu.cn

Table S1 Lattice constant *a* (Å), interlayer distance *d* (Å), bond length $d_{\text{Fe-Cl}}$ (Å) of Fe-Cl, bond angle θ_1 (°) of Cl-Fe-Cl, θ_2 (°) of Fe-Cl-Fe, formation energy $E_f(eV)$ and magnetic ground state of FeCl₂ bilayer.

а	d	$d_{\text{Fe-Cl}}$	θ_1	θ_2	$E_{\mathbf{f}}$	Magnetic
		•TC-CI	01	02	-1	ground
3.507	3.0667	2.459	89.132	90.750	-0.895	AFM

	11%	25%	33%	67%	100%
$J_{ m intra1}$	108	48	36	36	12
$J_{ m interl}$	18	8	6	6	2
$J_{ m intra2}$	6	6	6	6	6
$J_{ m inter2}$	4	4	4	8	4

Table S2 Neighboring number of exchange constants in self-intercalated $FeCl_2$ bilayer with different concentrations.

Fig. S1 Top and side views of Fe-intercalated FeCl₂ bilayer with concentration of (a) 11%, (b) 33%, (c) 67% and (d) 100%.

Fig. S2 (a) Top view of FeCl₂ bilayer of $2 \times 4 \times 1$ supercell. (b)-(f) Spin charge density of five different magnetic configurations. Pink and green areas represent the opposite spin states. The isosurface is 0.070 e/Bohr³.

The energy contributed by magnetic interaction in these magnetic orders in a unit cell can be expressed as

$$E_{FM} = E_0 - \left(6J_{intra} + 6J'_{intra} + J_{inter} + 6J'_{inter}\right)S^2$$
(S1)

$$E_{AFM1} = E_0 - \left(6J_{intra} + 6J'_{intra} - J_{inter} - 6J'_{inter}\right)S^2$$
(S2)

$$E_{AFM2} = E_0 + \left(2J_{intra} + 2J'_{intra} - J_{inter} + 2J'_{inter}\right)S^2$$
(S3)

$$E_{AFM3} = E_0 - \left(2J_{intra} - 2J'_{intra} + J_{inter} + 2J'_{inter}\right)S^2$$
(S4)

$$E_{AFM4} = E_0 - \left(2J_{intra} - 2J'_{intra} - J_{inter} - 2J'_{inter}\right)S^2$$
(S5)

Here, J_{intra} and J_{inter} are the nearest-neighbor exchange constants of intralayer and interlayer, In Fig.

S1a and b, J'_{intra} and J'_{inter} are the second-nearest-neighbor exchange constants. The J>0 denotes the ferromagnetic order, while the J<0 represents the antiferromagnetic order. To investigate the contributions from more distant interaction, the second-nearest-neighbor exchange interaction are included in FeCl₂ bilayer. The J_{intra} , J'_{inter} , J'_{intra} and J'_{inter} are 5.117, 0.241, -0.227 and -0.111 meV, respectively. The second-nearest-neighbor exchange constants are smaller than the nearest-neighbor exchange constants, so the second-nearest-neighbor magnetic coupling will not be considered in this work.

Fig. S3 Specific heat capacity as a function of temperature of the FeCl₂ bilayer.

Fig. S4 (a) Side view of 25% Fe-intercalated $FeCl_2$ bilayer. The red dash lines represent the exchange interaction between Fe sites. (b)-(f) Spin charge density of five different magnetic configurations. Pink and green areas represent the opposite spin states. The isosurface is 0.070 e/Bohr³.

The energy contributed by magnetic interaction in these magnetic orders in a unit cell can be expressed as

$$E_{FM} = E_0 - \left(12J_{intral} + \frac{3}{2}J_{interl} + J_{intra2} + \frac{3}{2}J_{inter2}\right)S^2$$
(S6)

$$E_{AFM1} = E_0 - \left(12J_{intral} + \frac{3}{2}J_{interl} - J_{intra2} + 2J_{inter2}\right)S^2$$
(S7)

$$E_{AFM2} = E_0 - \left(12J_{intral} - \frac{1}{2}J_{interl} - 2J_{inter2}\right)S^2$$
(S8)

$$E_{AFM3} = E_0 - \left(12J_{intral} - \frac{1}{2}J_{interl} + 2J_{inter2}\right)S^2$$
(S9)

$$E_{AFM4} = E_0 + \left(4J_{intral} + \frac{1}{2}J_{interl} - 2J_{inter2}\right)S^2$$
(S10)

Fig. S5 Band structures and projected density of states of (a) FeCl₂ bilayer, (b) 11%, (c) 25%, (d) 33%, (e) 67% and (f) 100% Fe-intercalated FeCl₂ bilayer. The Fermi level is set at 0 eV.