Supporting Information

Enhanced Emission Efficiency in Doped CsPbBr₃ Perovskite Nanocrystals: The Role of Ion Valence

Mengyu Guan^{1, #}, *Yunlong Xie*^{2, #}, *Yupeng Wang*¹, *Zhuojie He*¹, *Lei Qiu*¹, *Jun Liu*¹, *Keqiang Chen*¹, *Shaojiu Yan*¹, *Guogang Li*¹, *Zhigao Dai*¹*

¹Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan,

Hubei 430074, P. R. China.

²Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China

[#]The authors contribute equally to this work.

*To whom correspondence should be addressed. Emails: daizhigao@cug.edu.cn.

- Detailed method for the calculation of the average lifetime, radiative and nonradiative decay rates:
- **Table S1.** The change of X-ray diffraction angle corresponding to (110) and (200) crystal planes in Sr²⁺-doped CsPbBr₃ NCs with different Sr²⁺ concentrations.
- **Table S2.** The Cs:Pb:Br:Sr/La feed ratio and determined ratio by EDS in undoped and doped samples.
- **Table S3**. The Br/Pb, Br/(Pb+Sr) and Br/(Pb+La) ratios in CsPbBr₃, Sr²⁺-doped CsPbBr₃ NCs and La³⁺-doped CsPbBr₃ NCs.
- Table S4. PLQYs, τ_{ave} , k_r and k_{nr} of CsPbBr₃ and Sr²⁺/La³⁺-doped CsPbBr₃ NCs with different doping concentrations.
- Figure S1. The XRD pattern of orthorhombic phase CsPbBr₃.
- Figure S2. The size distribution statistics of CsPbBr₃ NCs, Sr²⁺-doped CsPbBr₃ NCs (1.50% Sr²⁺) and La³⁺-doped CsPbBr₃ NCs (1.86% La³⁺)
- **Figure S3.** The UV-vis absorption spectra and (b) the position of absorption peak and PL peak of Sr²⁺-doped CsPbBr₃ NCs with different Sr²⁺ concentrations.
- Figure S4. The UV-vis absorption spectra of La³⁺-doped CsPbBr₃ NCs with different La³⁺ concentrations.
- Figure S5. The excitation spectra of CsPbBr₃, CsPbBr₃:Sr²⁺ and CsPbBr₃:La³⁺.
- Figure S6. The PL spectra of Zn²⁺ doped CsPbBr₃ and Al³⁺ doped CsPbBr₃.

Detailed method for the calculation of the average lifetime, radiative and nonradiative decay rates: To explore the kinetic luminescence process, we calculated the radiative rate (k_r) of perovskite NCs and its non-radiative decay rate (k_{nr}) by photoluminescence quantum yield (PLQY) and the average lifetime (τ_{ave}) of the samples. The PLQY is the ratio of the number of photons emitted to the number absorbed. Both the radiative recombination and the non-radiative recombination depopulated the excited state. Hence, the PLQY is also defined as the radio of the radiative recombination rate to the total recombination rate, given by

$$PLQY = \frac{k_r}{k_r + k_{nr}}$$
(I)

The lifetime of the excited state is defined by the average time photon spends in the excited state prior to return to the ground state. The average lifetime is the inverse of the total recombination rate, given by

$$\tau_{ave} = \frac{1}{k_r + k_{nr}}$$
(II)

where τ_{avg} is the average time calculated by the fitted date of the time-resolved PL decay. The average lifetime (τ_{avg}) was calculated as follows:

$$\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2 + \dots}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3 + \dots}$$
(III)

in which $A_1, A_2, A_3, ...$ are the amplitudes of each of a series of components and $\tau_1, \tau_2, \tau_3, ...$ are the corresponding lifetime constants.

Therefore, we can calculate the radiative and non-radiative recombination rates:

$$k_{r} = \frac{PLQY}{\tau_{ave}}$$
(IV)
$$k_{nr} = \frac{1}{\tau_{ave}} - k_{r} = \frac{1 - PLQY}{\tau_{ave}}$$
(V)

Sample	(110)	(200)
СРВ	22.94°	30.55°
CPB:0.30%Sr ²⁺	22.96°	30.62°
CPB: 0.69%Sr ²⁺	23.01°	30.65°
CPB:0.97%Sr ²⁺	23.03°	30.65°
CPB:1.12%Sr ²⁺	23.09°	30.66°
CPB:1.50%Sr ²⁺	23.10°	30.66°
CPB:1.76%Sr ²⁺	23.12°	30.75°

Table S1. The change of X-ray diffraction angle corresponding to (110) and (200) crystal planes in Sr^{2+} -doped CsPbBr₃ NCs with different Sr^{2+} concentrations.

Sample	Feed ratio	Determined ratio by EDS	Determined ratio by XPS
CsPbBr ₃	Cs:Pb:Br = 1:4:8	Cs:Pb:Br = 1:1.1:3.2	Cs:Pb:Br = 1:0.8:2.2
CsPbBr ₃ :Sr ²⁺	Cs:Pb:Sr:Br = 1:2:2:8	Cs:Pb:Sr:Br = 1:0.9:0.08:3.1	Cs:Pb:Sr:Br = 1:1.1:0.05:3.6
CsPbBr ₃ :La ³⁺	Cs:Pb:La:Br = 1:2.4:1.1:9.6	Cs:Pb:La:Br = 1:0.9:0.09:3.4	Cs:Pb:La:Br = 1:0.8:0.06:3.3

Table S2. The Cs:Pb:Sr/La:Br feed ratio and determined ratio by EDS and XPS in undoped and doped samples.

Table S3. The Br/Pb, Br/(Pb+Sr) and Br/(Pb+La) ratios in CsPbBr₃, Sr^{2+} -doped CsPbBr₃ NCs and La³⁺-doped CsPbBr₃ NCs.

Sample	Determined ratio by EDS	Determined ratio by XPS
CsPbBr ₃	Br/Pb = 2.91	Br/Pb = 2.75
$CsPbBr_3:Sr^{2+}$	Br/(Pb+Sr) = 3.16	Br/(Pb+Sr) = 3.13
CsPbBr ₃ :La ³⁺	Br/(Pb+La) = 3.43	Br/(Pb+La) = 3.84

Sample	PLQY (%)	$\tau_{avg}\left(ns\right)$	$k_{r} (ns^{-1})$	$k_{nr} (ns^{-1})$
CPB	55	19	0.0289	0.0237
$CPB{:}0.30\% Sr^{2+}$	65	22	0.0295	0.0159
CPB: 0.69%Sr ²⁺	67	23	0.0291	0.0143
$CPB{:}0.97\% Sr^{2+}$	72	24	0.0300	0.0117
CPB:1.12%Sr ²⁺	79	25	0.0320	0.0080
$CPB:1.50\% Sr^{2+}$	87	26	0.0335	0.0050
$CPB{:}1.76\% Sr^{2+}$	76	23	0.0330	0.0104
CPB:0.57%La ³⁺	58	20	0.0290	0.0210
CPB:1.24%La ³⁺	70	21	0.0333	0.0143
CPB:1.86%La ³⁺	87	26	0.0334	0.0050
CPB:2.43%La ³⁺	76	24	0.0316	0.0100

Table S3. PLQYs, τ_{ave} , k_r and k_{nr} of CsPbBr₃ and Sr²⁺/La³⁺-doped CsPbBr₃ NCs with different doping concentrations.

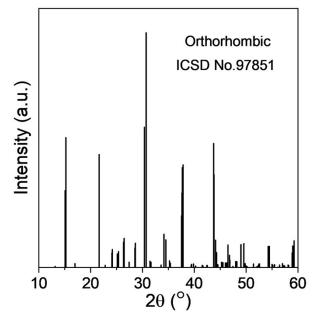
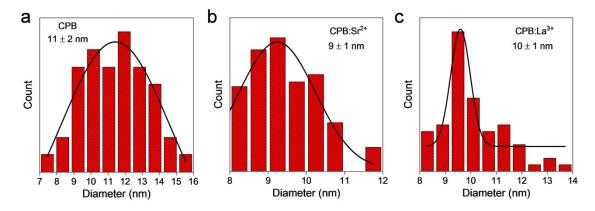



Figure S1. The XRD pattern of orthorhombic phase CsPbBr₃.

Figure S2. The size distribution statistics of (a) CsPbBr₃ NCs, (b) Sr^{2+} -doped CsPbBr₃ NCs (1.50% Sr^{2+}) and (c) La^{3+} -doped CsPbBr₃ NCs (1.86% La^{3+}).

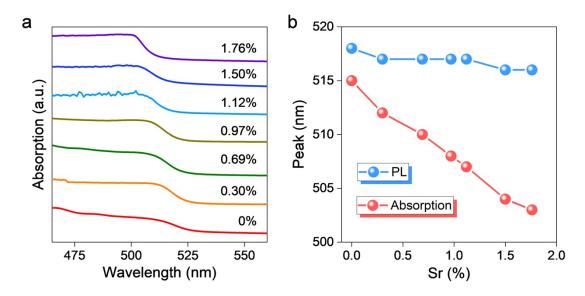


Figure S3. (a) UV-vis absorbance and (b) the position of absorption peak and PL peak of Sr^{2+} -doped $CsPbBr_3$ NCs with different Sr^{2+} ions concentrations.

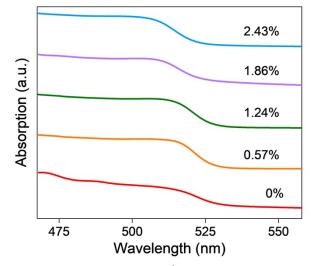


Figure S4. UV-vis absorption spectra of La^{3+} -doped of CsPbBr₃ NCs with different La^{3+} ions concentration.

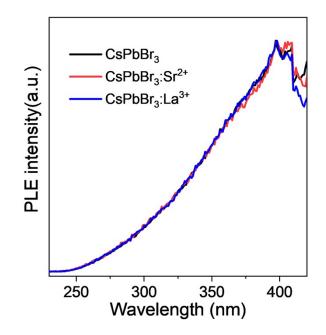


Figure S5. The excitation spectra of CsPbBr₃, CsPbBr₃:Sr²⁺ and CsPbBr₃:La³⁺.

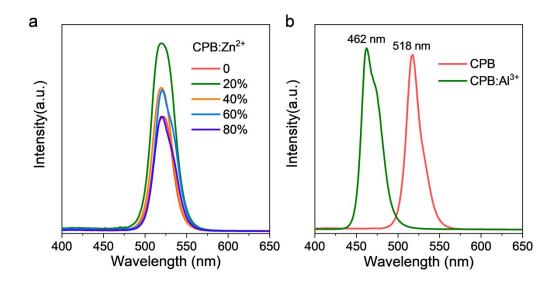


Figure S6. The PL spectra of (a) Zn^{2+} doped CsPbBr₃ and (b) Al³⁺ doped CsPbBr₃.