Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Water-soluble Cit-NaYbF₄:Tm³⁺ with enhanced 802 nm emission by Sr²⁺ ions doping for

in vivo fluorescence molecular tomography

Xiaoli Luo^{a,b}, Qichen Chen^a, Hongbo Guo^a, Chen Cheng^a, Qianqian Ren^a, Heng Zhang^a, Xiaowei He^{a,*}, Wu Zhao^{a,*}

^aSchool of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China.

^bSchool of Mathematics and Computer Science, Ningxia Normal University, Guyuan, Ningxia 756099, China.

* Corresponding author: Dr. Wu Zhao, Tel: +86 29 88308280. E-mail: <u>zhaowu@nwu.edu.cn</u>

Figure S1: The magnified XRD patterns of NaYbF₄:2%Tm³⁺/x%Sr²⁺ (x = 1, 3, 5, 8, and 10).

Figure S2: Analysis of NaYbF4:2%Tm³⁺/x%Mn²⁺ crystals. SEM images of NaYb_{0.98}. _xF4:2%Tm³⁺/x%Mn²⁺ crystals synthesized with (a) x = 1; (b) x = 3; (c) x = 5; (d) x = 8; (e) x = 10; (f) XRD patterns of NaYbF4:2%Tm³⁺/x%Mn²⁺ (x = 1, 3, 5, 8, and 10). (g) the TEM image of NaYbF4:2%Tm³⁺/5%Mn²⁺; (h) the SAED pattern of NaYbF4:2%Tm³⁺/5%Mn²⁺; (i) the corresponding HRTEM image of NaYbF4:2%Tm³⁺/5%Mn²⁺.

Figure S3: Analysis of NaYbF₄:2%Tm³⁺/x%Fe²⁺ crystals. SEM images of NaYb_{0.98}. _xF₄:2%Tm³⁺/x%Fe²⁺ crystals synthesized with (a) x = 1; (b) x = 3; (c) x = 5; (d) x = 8; (e) x = 10; (f) XRD patterns of NaYbF₄:2%Tm³⁺/x%Fe²⁺ (x = 1, 3, 5, 8, and 10). (g) the TEM image of NaYbF₄:2%Tm³⁺/5%Fe²⁺; (h) the SAED pattern of NaYbF₄:2%Tm³⁺/5%Fe²⁺; (i) the corresponding HRTEM image of NaYbF₄:2%Tm³⁺/5%Fe²⁺.

Figure S4: Analysis of NaYbF₄:2%Tm³⁺/x%Fe³⁺ crystals. SEM images of NaYb_{0.98}. _xF₄:2%Tm³⁺/x%Fe³⁺ crystals synthesized with (a) x = 1; (b) x = 3; (c) x = 5; (d) x = 8; (e) x = 10; (f) XRD patterns of NaYbF₄:2%Tm³⁺/x%Fe³⁺ (x = 1, 3, 5, 8, and 10). (g) the TEM image of NaYbF₄:2%Tm³⁺/5%Fe³⁺; (h) the SAED pattern of NaYbF₄:2%Tm³⁺/5%Fe³⁺; (i) the corresponding HRTEM image of NaYbF₄:2%Tm³⁺/5%Fe³⁺.

Fig. S5: Size histograms of NaYb_{0.98-x} F_4 :2%Tm³⁺/x%Sr²⁺ crystals synthesized with (a) x = 1;

Fig. S6: Size histograms of NaYb_{0.98-x} F_4 :2%Tm³⁺/x%Mn²⁺ crystals synthesized with (a) x =

1; (b) x = 3; (c) x = 5; (d) x = 8; (e) x = 10.

Fig. S7: Size histograms of NaYb_{0.98-x}F₄:2%Tm³⁺/x%Fe²⁺ crystals synthesized with (a) x = 1;

Fig. S8: Size histograms of NaYb_{0.98-x}F₄:2%Tm³⁺/x%Fe³⁺ crystals synthesized with (a) x = 1;

(b) x = 3; (c) x = 5; (d) x = 8; (e) x = 10.

Fig. S9 DLS of prepared Cit-NaYbF₄:2%Tm³⁺/5%Sr²⁺.

Figure S10: The UC luminescence spectra of the samples generated with different ions doping at different doping molar ratios. (a) NaYbF₄:2%Tm³⁺/x%Mn²⁺(x = 0, 1, 3, 5, 8, and 10), (b) NaYbF₄:2%Tm³⁺/x%Fe²⁺(x = 0, 1, 3, 5, 8, and 10), (c) NaYbF₄:2%Tm³⁺/x%Fe³⁺(x = 0, 1, 3, 5, 8, and 10).

Figure S11: Higher-magnification TEM image of (a) $NaYbF_4:2\%Tm^{3+}$; (b) $NaYbF_4:2\%Tm^{3+}/5\%Sr^{2+}$. The transparent areas circled in red represent the surface of these UCNPs coated with water-soluble organic ligands

Figure S12: Aqueous solution of UCNPs at a concentration of 400 μ g/mL at room temperature. (left) NaYbF₄:2%Tm³⁺/5%Sr²⁺; (right) NaYbF₄:2%Tm³⁺.

Fig. S13 Fluorescence signal detection of pork muscle tissues treated with different fluorescence probes in different depths. (a-e) 2 mg/mL Cit-NaYbF₄:2%Tm³⁺/5%Sr²⁺; (f-j) 0.1 mg/mL Indocyanine Green (ICG). (a) 20 mm; (b) 20 mm with energy; (c) 21 mm; (d) 21 mm with energy; (e) 20 mm of pork muscle tissues treated with 2 mg/mL Cit-NaYbF₄:2%Tm³⁺/5%Sr²⁺; (f) 13 mm; (g) 13 mm with energy; (h) 14 mm; (i) 14 mm with energy; (j) 13 mm of pork muscle tissues treated with 0.1 mg/mL ICG.

Figure S14: Fluorescence molecular tomography (FMT) imaging in phantom at different faces. (a-c) Bright field images. (d-e) Upconversion luminescence images.

Figure S15: CT image.