Supporting Information

A two-terminal binary HfO₂ resistance switching random access memory for artificial synaptic device

Xiaozhang Chen,^{a,c} You Lv,^{a,c} Zhaobo Tian,^{a,c} Jingxi Yang,^a Yuan Zhu,^{*a,b}

Longxing Su^{*a}

^a School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China

^b Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen 518055, China

^c These authors contribute equally to this work.

* Authors to whom correspondence should be addressed: <u>zhuy3@sustech.edu.cn</u> and <u>sulx@sustech.edu.cn</u>

These file includes:

1. Figure S1 The fabrication processes of the HfO₂ RRAM device.

2. Figure S2 The Raman spectrum of the as-prepared HfO_2 sample.

3. Figure S3 The solutions mixed with HfO_2 powders purchased from Aladdin (Left) and prepared by hydrothermal method (Right).

4. Figure S4 The SEM image of the as prepared HfO₂ sample.

5. Figure S5 The SEM image of the HfO₂ purchased from Aladdin corporation.

6. Figure S6 The TEM image of the as prepared HfO_2 sample. M, O, and T represent monoclinic, orthorhombic, and tetragonal phases.

7. Figure S7 The TEM image of the as prepared HfO₂ sample, in which the lattice vacancies in different regions are clearly identified.

8. Figure S8 The SEM images and EDS spectra of the HfO_2 MIM device after the measurement.

9. Figure S9 The XPS spectra of the HfO₂ MIM device after the measurement.

Figure S1 The fabrication processes of the HfO₂ RRAM device.

 $(a \rightarrow b)$ The as-prepared HfO₂ powders were loaded into a stainless steel mould; $(b \rightarrow c \rightarrow d)$ The as-prepared HfO₂ powders were re-shaped into a wafer-liked HfO₂ sample under 8 MPa by using a powder tablet press; $(d \rightarrow e \rightarrow f)$ The bottom and top Cu electrodes were deposited onto the re-shaped wafer-liked HfO₂ sample by using a thermal evaporation method.

Figure S2 The Raman spectrum of the as-prepared HfO₂ sample.

Figure S3 The solutions mixed with HfO₂ powders purchased from Aladdin (Left) and prepared by hydrothermal method (Right).

Figure S4 The SEM image of the as prepared HfO₂ sample.

Figure S5 The SEM image of the HfO_2 purchased from Aladdin corporation.

Figure S6 The TEM image of the as prepared HfO_2 sample. M, O, and T represent monoclinic, orthorhombic, and tetragonal phases.

Figure S7 The TEM image of the as prepared HfO₂ sample, in which the lattice vacancies in different regions are clearly identified.

Figure S8 The SEM images and EDS spectra of the HfO₂ MIM device after the measurement.

Figure S9 The XPS spectra of the HfO₂ MIM device after the measurement.